Abstract

The parametric soliton laser is described. It operates through parametric four-photon mixing in a synchronously pumped ring cavity. A dispersion-shifted single-mode fiber at 1.525 μm is used, and the pump wavelength is set at the wavelength of zero chromatic dispersion. Clear evidence of a threshold was found, and a pulse width of 210 fsec was obtained. An intensity-dependent carrier frequency was observed and is explained by phase matching through the nonlinear index.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen, C. Lin, R. K. Jain, Appl. Phys. Lett. 30, 340 (1977).
    [CrossRef]
  2. H. A. Haus, M. Nakazawa, J. Opt. Soc. Am. B 4, 652 (1987).
    [CrossRef]
  3. M. N. Islam, L. F. Mollenauer, in Technical Digest of the Fourteenth International Quantum Electronics Conference (Optical Society of America, Washington, D. C., 1986), paper TuHH1.
  4. J. D. Kafka, T. Baer, Opt. Lett. 12, 181 (1987).
    [CrossRef] [PubMed]
  5. R. H. Stolen, J. E. Bjorkholm, A. Ashkin, Appl. Phys. Lett. 24, 308 (1974).
    [CrossRef]
  6. R. H. Stolen, J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
    [CrossRef]
  7. C. Lin, W. A. Reed, A. D. Pearson, H. T. Shang, Opt. Lett. 6, 493 (1981).
    [CrossRef] [PubMed]
  8. K. Washio, K. Inoue, T. Tanigawa, Electron. Lett. 16, 331 (1980).
    [CrossRef]
  9. B. Zysset, P. Beaud, W. Hodel, H. P. Weber, in Ultrafast Phenomena V, G. R. Fleming, A. E. Siegman, eds. (Springer-Verlag, Berlin, 1986), pp. 54–57.
  10. G. M. Mitschke, L. F. Mollenauer, Opt. Lett. 11, 657 (1986).
    [CrossRef]
  11. K. Tai, A. Hasegawa, A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
    [CrossRef] [PubMed]
  12. S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, IEEE J. Quantum Electron. QE-16, 215 (1981).

1987 (2)

1986 (2)

G. M. Mitschke, L. F. Mollenauer, Opt. Lett. 11, 657 (1986).
[CrossRef]

K. Tai, A. Hasegawa, A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

1982 (1)

R. H. Stolen, J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

1981 (2)

C. Lin, W. A. Reed, A. D. Pearson, H. T. Shang, Opt. Lett. 6, 493 (1981).
[CrossRef] [PubMed]

S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, IEEE J. Quantum Electron. QE-16, 215 (1981).

1980 (1)

K. Washio, K. Inoue, T. Tanigawa, Electron. Lett. 16, 331 (1980).
[CrossRef]

1977 (1)

R. H. Stolen, C. Lin, R. K. Jain, Appl. Phys. Lett. 30, 340 (1977).
[CrossRef]

1974 (1)

R. H. Stolen, J. E. Bjorkholm, A. Ashkin, Appl. Phys. Lett. 24, 308 (1974).
[CrossRef]

Ashkin, A.

R. H. Stolen, J. E. Bjorkholm, A. Ashkin, Appl. Phys. Lett. 24, 308 (1974).
[CrossRef]

Baer, T.

Beaud, P.

B. Zysset, P. Beaud, W. Hodel, H. P. Weber, in Ultrafast Phenomena V, G. R. Fleming, A. E. Siegman, eds. (Springer-Verlag, Berlin, 1986), pp. 54–57.

Bjorkholm, J. E.

R. H. Stolen, J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

R. H. Stolen, J. E. Bjorkholm, A. Ashkin, Appl. Phys. Lett. 24, 308 (1974).
[CrossRef]

Hasegawa, A.

K. Tai, A. Hasegawa, A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

Haus, H. A.

Hodel, W.

B. Zysset, P. Beaud, W. Hodel, H. P. Weber, in Ultrafast Phenomena V, G. R. Fleming, A. E. Siegman, eds. (Springer-Verlag, Berlin, 1986), pp. 54–57.

Inoue, K.

K. Washio, K. Inoue, T. Tanigawa, Electron. Lett. 16, 331 (1980).
[CrossRef]

Islam, M. N.

M. N. Islam, L. F. Mollenauer, in Technical Digest of the Fourteenth International Quantum Electronics Conference (Optical Society of America, Washington, D. C., 1986), paper TuHH1.

Izawa, T.

S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, IEEE J. Quantum Electron. QE-16, 215 (1981).

Jain, R. K.

R. H. Stolen, C. Lin, R. K. Jain, Appl. Phys. Lett. 30, 340 (1977).
[CrossRef]

Kafka, J. D.

Kobayashi, S.

S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, IEEE J. Quantum Electron. QE-16, 215 (1981).

Lin, C.

C. Lin, W. A. Reed, A. D. Pearson, H. T. Shang, Opt. Lett. 6, 493 (1981).
[CrossRef] [PubMed]

R. H. Stolen, C. Lin, R. K. Jain, Appl. Phys. Lett. 30, 340 (1977).
[CrossRef]

Mitschke, G. M.

G. M. Mitschke, L. F. Mollenauer, Opt. Lett. 11, 657 (1986).
[CrossRef]

Mollenauer, L. F.

G. M. Mitschke, L. F. Mollenauer, Opt. Lett. 11, 657 (1986).
[CrossRef]

M. N. Islam, L. F. Mollenauer, in Technical Digest of the Fourteenth International Quantum Electronics Conference (Optical Society of America, Washington, D. C., 1986), paper TuHH1.

Nakazawa, M.

Pearson, A. D.

Reed, W. A.

Shang, H. T.

Shibata, N.

S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, IEEE J. Quantum Electron. QE-16, 215 (1981).

Shibata, S.

S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, IEEE J. Quantum Electron. QE-16, 215 (1981).

Stolen, R. H.

R. H. Stolen, J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

R. H. Stolen, C. Lin, R. K. Jain, Appl. Phys. Lett. 30, 340 (1977).
[CrossRef]

R. H. Stolen, J. E. Bjorkholm, A. Ashkin, Appl. Phys. Lett. 24, 308 (1974).
[CrossRef]

Tai, K.

K. Tai, A. Hasegawa, A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

Tanigawa, T.

K. Washio, K. Inoue, T. Tanigawa, Electron. Lett. 16, 331 (1980).
[CrossRef]

Tomita, A.

K. Tai, A. Hasegawa, A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

Washio, K.

K. Washio, K. Inoue, T. Tanigawa, Electron. Lett. 16, 331 (1980).
[CrossRef]

Weber, H. P.

B. Zysset, P. Beaud, W. Hodel, H. P. Weber, in Ultrafast Phenomena V, G. R. Fleming, A. E. Siegman, eds. (Springer-Verlag, Berlin, 1986), pp. 54–57.

Zysset, B.

B. Zysset, P. Beaud, W. Hodel, H. P. Weber, in Ultrafast Phenomena V, G. R. Fleming, A. E. Siegman, eds. (Springer-Verlag, Berlin, 1986), pp. 54–57.

Appl. Phys. Lett. (2)

R. H. Stolen, C. Lin, R. K. Jain, Appl. Phys. Lett. 30, 340 (1977).
[CrossRef]

R. H. Stolen, J. E. Bjorkholm, A. Ashkin, Appl. Phys. Lett. 24, 308 (1974).
[CrossRef]

Electron. Lett. (1)

K. Washio, K. Inoue, T. Tanigawa, Electron. Lett. 16, 331 (1980).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. H. Stolen, J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, IEEE J. Quantum Electron. QE-16, 215 (1981).

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

K. Tai, A. Hasegawa, A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

Other (2)

B. Zysset, P. Beaud, W. Hodel, H. P. Weber, in Ultrafast Phenomena V, G. R. Fleming, A. E. Siegman, eds. (Springer-Verlag, Berlin, 1986), pp. 54–57.

M. N. Islam, L. F. Mollenauer, in Technical Digest of the Fourteenth International Quantum Electronics Conference (Optical Society of America, Washington, D. C., 1986), paper TuHH1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for the PSL. B. S., beam splitter.

Fig. 2
Fig. 2

Autocorrelation waveforms and spectra of the PSL. Soliton oscillation is observed at the center of the trace (a), which is expanded in (b). The oscillation spectrum is shown in (c).

Fig. 3
Fig. 3

Pump power dependence of the PSL oscillation at peak pump powers of (a) 17 W, (b) 29 W, and (c) 42 W. Spectra and autocorrelation traces are shown at each pump power.

Fig. 4
Fig. 4

(a) Phase mismatch versus the Stokes frequency shift Ω at 1.526 μm due to the material (dashed curve), the waveguide (dashed–dotted curve), and the total (solid curve) dispersion. The phase mismatch due to the nonlinear index (ΔkSPM) is also shown (solid horizontal line). (b) The calculated (curves) and experimental (circles) results of the Stokes (upper curves) and anti-Stokes (lower curves) wavelengths.

Fig. 5
Fig. 5

Cavity detuning characteristics of the PSL. The position where complete synchronization is obtained is noted as the detuning of 0 mm. Negative detuning corresponds to cavity shortening.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ k m + Δ k w + Δ k SPM = 0 ,
Δ k m = n a ω a / c + n s ω s / c - 2 n p ω p / c ,
Δ k ω = Δ n ( b a ω a / c + b s ω s / c - 2 b p ω p / c ) ,
Δ k SPM = 2 ω c n 2 P p π ω 0 2 .

Metrics