Abstract

A new method for the coherent characterization of subpicosecond optical pulses after propagation through a nonlinear medium (i.e., with frequency broadening) is described. The phase shift on a single pulse introduced by the nonlinearity can be measured with a high dynamic range. We report as one application of this technique a measurement of the self-phase modulation incurred by an 800-fsec pulse after the pulse propagates along a dispersive single-mode optical fiber.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Rothenberg, D. Grischkowsky, Opt. Lett. 12, 99 (1987).
    [CrossRef] [PubMed]
  2. C. Froehly, A. Lacourt, J. C. Vienot, J. Opt. (Paris) 4, 183 (1973).
  3. J. Piasecki, B. Colombeau, M. Vampouille, C. Froehly, J. Arnaud, Appl. Opt. 19, 3749 (1980).
    [CrossRef] [PubMed]
  4. J. Piasecki, Electron. Lett. 16, 498 (1980).
    [CrossRef]
  5. A. Barthelemy, P. Facq, C. Froehly, J. Arnaud, Electron. Lett. 18, 6, 247 (1982).
    [CrossRef]
  6. H. Nakatsuka, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 47, 910 (1981); L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
    [CrossRef] [PubMed]
  7. C. Froehly, B. Colombeau, M. Vampouille, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. 20, p. 65.
    [CrossRef]
  8. F. Salin, P. Georges, G. Roger, A. Brun, Appl. Opt. 26, 4528 (1987).
    [CrossRef] [PubMed]
  9. W. J. Tomlinson, R. H. Stolen, C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
    [CrossRef]

1987

1984

1982

A. Barthelemy, P. Facq, C. Froehly, J. Arnaud, Electron. Lett. 18, 6, 247 (1982).
[CrossRef]

1981

H. Nakatsuka, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 47, 910 (1981); L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
[CrossRef] [PubMed]

1980

1973

C. Froehly, A. Lacourt, J. C. Vienot, J. Opt. (Paris) 4, 183 (1973).

Arnaud, J.

A. Barthelemy, P. Facq, C. Froehly, J. Arnaud, Electron. Lett. 18, 6, 247 (1982).
[CrossRef]

J. Piasecki, B. Colombeau, M. Vampouille, C. Froehly, J. Arnaud, Appl. Opt. 19, 3749 (1980).
[CrossRef] [PubMed]

Balant, A. C.

H. Nakatsuka, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 47, 910 (1981); L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
[CrossRef] [PubMed]

Barthelemy, A.

A. Barthelemy, P. Facq, C. Froehly, J. Arnaud, Electron. Lett. 18, 6, 247 (1982).
[CrossRef]

Brun, A.

Colombeau, B.

J. Piasecki, B. Colombeau, M. Vampouille, C. Froehly, J. Arnaud, Appl. Opt. 19, 3749 (1980).
[CrossRef] [PubMed]

C. Froehly, B. Colombeau, M. Vampouille, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. 20, p. 65.
[CrossRef]

Facq, P.

A. Barthelemy, P. Facq, C. Froehly, J. Arnaud, Electron. Lett. 18, 6, 247 (1982).
[CrossRef]

Froehly, C.

A. Barthelemy, P. Facq, C. Froehly, J. Arnaud, Electron. Lett. 18, 6, 247 (1982).
[CrossRef]

J. Piasecki, B. Colombeau, M. Vampouille, C. Froehly, J. Arnaud, Appl. Opt. 19, 3749 (1980).
[CrossRef] [PubMed]

C. Froehly, A. Lacourt, J. C. Vienot, J. Opt. (Paris) 4, 183 (1973).

C. Froehly, B. Colombeau, M. Vampouille, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. 20, p. 65.
[CrossRef]

Georges, P.

Grischkowsky, D.

J. E. Rothenberg, D. Grischkowsky, Opt. Lett. 12, 99 (1987).
[CrossRef] [PubMed]

H. Nakatsuka, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 47, 910 (1981); L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
[CrossRef] [PubMed]

Lacourt, A.

C. Froehly, A. Lacourt, J. C. Vienot, J. Opt. (Paris) 4, 183 (1973).

Nakatsuka, H.

H. Nakatsuka, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 47, 910 (1981); L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
[CrossRef] [PubMed]

Piasecki, J.

Roger, G.

Rothenberg, J. E.

Salin, F.

Shank, C. V.

Stolen, R. H.

Tomlinson, W. J.

Vampouille, M.

J. Piasecki, B. Colombeau, M. Vampouille, C. Froehly, J. Arnaud, Appl. Opt. 19, 3749 (1980).
[CrossRef] [PubMed]

C. Froehly, B. Colombeau, M. Vampouille, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. 20, p. 65.
[CrossRef]

Vienot, J. C.

C. Froehly, A. Lacourt, J. C. Vienot, J. Opt. (Paris) 4, 183 (1973).

Appl. Opt.

Electron. Lett.

J. Piasecki, Electron. Lett. 16, 498 (1980).
[CrossRef]

A. Barthelemy, P. Facq, C. Froehly, J. Arnaud, Electron. Lett. 18, 6, 247 (1982).
[CrossRef]

J. Opt. (Paris)

C. Froehly, A. Lacourt, J. C. Vienot, J. Opt. (Paris) 4, 183 (1973).

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. Lett.

H. Nakatsuka, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 47, 910 (1981); L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
[CrossRef] [PubMed]

Other

C. Froehly, B. Colombeau, M. Vampouille, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. 20, p. 65.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the principles of spectral interferometry. The light from a broadband source is launched into a Mach–Zehnder interferometer, where one arm contains the medium or component under test. The transmitted and filtered spectrum interferes with the reference spectrum, leading to a spectral interferogram that can be observed behind a spectroscope. The figures on the right show the spectral interference building. Each maximum in the spectrogram corresponds to an increase of 2π in the phase difference between the spectra of the reference and the test arms.

Fig. 2
Fig. 2

Experimental setup for the measurement of phase shifts introduced by dispersive self-phase modulation in an optical fiber. The input of the interferometer consists of 80-fsec pulses at 595 nm and a 10-Hz repetition rate. Beam splitter BS1 reflects 50% of the input light in the reference arm, whose length can be varied by moving the corner cube CC. In the other path a dispersive device, which uses prism P and a filtering slit S, broadens the pulses before they are launched into 5.75 m of a single-mode fiber. Beam splitter BS2 superimposes the fiber output onto the reference beam; it is then analyzed by a grating spectroscope. The spectral interference is detected by an OMA and displayed on a monitor. The reference spectrum shape is given by the dashed curve. MO1, MO2, microscope objectives.

Fig. 3
Fig. 3

Typical spectral interferogram recorded with a single input pulse. The fringe modulation is not 100% because of the energy difference between the signal and reference pulses. The information is carried by the fluctuation in the fringe period as a function of wavelength. The reference spectrum shape is given by the dashed curve.

Fig. 4
Fig. 4

Phase shift induced on an 800-fsec pulse after propagation along a nonlinear fiber exhibiting normal dispersion. The crosses with error bars are experimental points, and the solid curve is obtained by a numerical computation of the nonlinear Schrödinger equation; these show good agreement between theory and experiment.

Metrics