Abstract

A single-mode-fiber phase modulator was constructed by contacting the fiber with a lapped glass capillary tube. The capillary’s inner surface provides a long, effectively semicircular contact region to the fiber, allowing throughput of acoustic waves launched from a thin-film ZnO transducer fabricated directly onto the capillary’s other lapped face. The device operated at a center frequency of 416 MHz with a FWHM bandwidth of 14 MHz. The maximum phase shift was 0.033rad/mW, with a largest measured value of 1.2 rad at 1.3-W input electrical power.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. L. Heffner, W. P. Risk, B. T. Khuri-Yakub, G. S. Kino, in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1986), p. 709.
  2. D. S. Czaplak, J. F. Weller, L. Goldberg, F. S. Hickernell, H. D. Knuth, S. R. Young, in Proceeding of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1987), p. 491.
  3. A. A. Godil, D. B. Patterson, B. L. Heffner, G. S. Kino, B. T. Khuri-Yakub, in Proceedings of Fifth International Symposium on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1988), p. 159.
  4. F. S. Hickernell, G. M. Reese, H. D. Knuth, T. P. Emmons, J. F. Weller, D. S. Czaplak, in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1988), p. 715.
  5. T. R. Meeker, A. H. Meitzler, in Physical Acoustics, W. P. Mason, ed. (Academic, New York, 1964), Vol. IA, p. 130.
  6. G. S. Kino, Acoustic Waves: Devices, Imaging, & Analog Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1987).

Czaplak, D. S.

D. S. Czaplak, J. F. Weller, L. Goldberg, F. S. Hickernell, H. D. Knuth, S. R. Young, in Proceeding of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1987), p. 491.

F. S. Hickernell, G. M. Reese, H. D. Knuth, T. P. Emmons, J. F. Weller, D. S. Czaplak, in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1988), p. 715.

Emmons, T. P.

F. S. Hickernell, G. M. Reese, H. D. Knuth, T. P. Emmons, J. F. Weller, D. S. Czaplak, in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1988), p. 715.

Godil, A. A.

A. A. Godil, D. B. Patterson, B. L. Heffner, G. S. Kino, B. T. Khuri-Yakub, in Proceedings of Fifth International Symposium on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1988), p. 159.

Goldberg, L.

D. S. Czaplak, J. F. Weller, L. Goldberg, F. S. Hickernell, H. D. Knuth, S. R. Young, in Proceeding of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1987), p. 491.

Heffner, B. L.

B. L. Heffner, W. P. Risk, B. T. Khuri-Yakub, G. S. Kino, in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1986), p. 709.

A. A. Godil, D. B. Patterson, B. L. Heffner, G. S. Kino, B. T. Khuri-Yakub, in Proceedings of Fifth International Symposium on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1988), p. 159.

Hickernell, F. S.

F. S. Hickernell, G. M. Reese, H. D. Knuth, T. P. Emmons, J. F. Weller, D. S. Czaplak, in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1988), p. 715.

D. S. Czaplak, J. F. Weller, L. Goldberg, F. S. Hickernell, H. D. Knuth, S. R. Young, in Proceeding of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1987), p. 491.

Khuri-Yakub, B. T.

B. L. Heffner, W. P. Risk, B. T. Khuri-Yakub, G. S. Kino, in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1986), p. 709.

A. A. Godil, D. B. Patterson, B. L. Heffner, G. S. Kino, B. T. Khuri-Yakub, in Proceedings of Fifth International Symposium on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1988), p. 159.

Kino, G. S.

G. S. Kino, Acoustic Waves: Devices, Imaging, & Analog Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1987).

B. L. Heffner, W. P. Risk, B. T. Khuri-Yakub, G. S. Kino, in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1986), p. 709.

A. A. Godil, D. B. Patterson, B. L. Heffner, G. S. Kino, B. T. Khuri-Yakub, in Proceedings of Fifth International Symposium on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1988), p. 159.

Knuth, H. D.

D. S. Czaplak, J. F. Weller, L. Goldberg, F. S. Hickernell, H. D. Knuth, S. R. Young, in Proceeding of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1987), p. 491.

F. S. Hickernell, G. M. Reese, H. D. Knuth, T. P. Emmons, J. F. Weller, D. S. Czaplak, in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1988), p. 715.

Meeker, T. R.

T. R. Meeker, A. H. Meitzler, in Physical Acoustics, W. P. Mason, ed. (Academic, New York, 1964), Vol. IA, p. 130.

Meitzler, A. H.

T. R. Meeker, A. H. Meitzler, in Physical Acoustics, W. P. Mason, ed. (Academic, New York, 1964), Vol. IA, p. 130.

Patterson, D. B.

A. A. Godil, D. B. Patterson, B. L. Heffner, G. S. Kino, B. T. Khuri-Yakub, in Proceedings of Fifth International Symposium on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1988), p. 159.

Reese, G. M.

F. S. Hickernell, G. M. Reese, H. D. Knuth, T. P. Emmons, J. F. Weller, D. S. Czaplak, in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1988), p. 715.

Risk, W. P.

B. L. Heffner, W. P. Risk, B. T. Khuri-Yakub, G. S. Kino, in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1986), p. 709.

Weller, J. F.

D. S. Czaplak, J. F. Weller, L. Goldberg, F. S. Hickernell, H. D. Knuth, S. R. Young, in Proceeding of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1987), p. 491.

F. S. Hickernell, G. M. Reese, H. D. Knuth, T. P. Emmons, J. F. Weller, D. S. Czaplak, in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1988), p. 715.

Young, S. R.

D. S. Czaplak, J. F. Weller, L. Goldberg, F. S. Hickernell, H. D. Knuth, S. R. Young, in Proceeding of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1987), p. 491.

Other (6)

B. L. Heffner, W. P. Risk, B. T. Khuri-Yakub, G. S. Kino, in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1986), p. 709.

D. S. Czaplak, J. F. Weller, L. Goldberg, F. S. Hickernell, H. D. Knuth, S. R. Young, in Proceeding of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1987), p. 491.

A. A. Godil, D. B. Patterson, B. L. Heffner, G. S. Kino, B. T. Khuri-Yakub, in Proceedings of Fifth International Symposium on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1988), p. 159.

F. S. Hickernell, G. M. Reese, H. D. Knuth, T. P. Emmons, J. F. Weller, D. S. Czaplak, in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1988), p. 715.

T. R. Meeker, A. H. Meitzler, in Physical Acoustics, W. P. Mason, ed. (Academic, New York, 1964), Vol. IA, p. 130.

G. S. Kino, Acoustic Waves: Devices, Imaging, & Analog Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Lapped capillary device with the transducer deposited over the groove.

Fig. 2
Fig. 2

Measurement of the voltage reflection coefficient from 300 to 600 MHz. The vertical scale is in decibels. The minimum reflection is −5.86 dB at 428 MHz.

Fig. 3
Fig. 3

Experimental setup for measuring the phase modulation.

Fig. 4
Fig. 4

Maximum phase shift versus the frequency at 13-dBm input electrical power with the polarization optimized.

Fig. 5
Fig. 5

Maximum phase shift versus the square root of power at 416 MHz (on resonance) with the polarization optimized.

Fig. 6
Fig. 6

Maximum phase shift versus the light polarization angle for experimental and theoretical cases.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = 2 π Δ n L / λ 0 = π n 3 p S L / λ 0 ,
S = ( 2 P a / Z 0 V 2 A ) 1 / 2 ,
Δ ϕ = π n 3 p L / λ 0 [ 2 η P e / ( w L ) Z 0 V 2 ] 1 / 2 ,
S ( core ) = S 0 ( 1 r 1 ) exp ( j β d / 2 ) [ 1 + r 2 × exp ( j β d ) ] / [ 1 r 1 r 2 exp ( 2 j β d ) ] .
η = 10 ( 11 / 10 ) = 0 . 079 .
Δ ϕ = 2 . 13 rad / W .

Metrics