Abstract

Laser-induced circular birefringence measurements have been performed on a liquid suspension of polymer microellipsoids in order to study its optical nonlinearity as a function of the host liquid’s refractive index nh. The results show that the large values obtained for the χ1221(3) term (1.6 × 10‐8 esu for nh = 1.330) can be explained with an intrinsic birefringence of the microellipsoids relative to their geometrical axes. The obtained values for the refractive indices are n = 1.391 and n = 1.368.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Pizzoferrato, M. Marinelli, U. Zammit, F. Scudieri, S. Martellucci, M. Romagnoli, Opt. Commun. 68, 231 (1988).
    [CrossRef]
  2. B. Bobbs, R. Shih, R. Fetterman, Appl. Phys. Lett. 52, 4 (1988).
    [CrossRef]
  3. S. O. Sari, D. Rogovin, Opt. Lett. 9, 414 (1984).
    [CrossRef] [PubMed]
  4. D. Rogovin, Phys. Rev. A 32, 2837 (1985).
    [CrossRef] [PubMed]
  5. See, e.g., P. W. Smith, A. Ashkin, W. J. Tomlinson, Opt. Lett. 6, 284 (1981); A. Ashkin, J. M. Dziedzic, P. W. Smith, Opt. Lett. 7, 276 (1982); S. Chang, T. Sato, Appl. Opt. 25, 1634 (1986); D. Rogovin, S. Sari, Phys. Rev. A 31, 2375 (1985).
    [CrossRef] [PubMed]
  6. See, e.g., E. G. Hanson, Y. R. Shen, G. K. L. Wong, Phys. Rev. 14, 1281 (1976).
    [CrossRef]
  7. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), pp. 291–298.
  8. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941); M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  9. J. R. Forrest, M. A. Evanco, R. J. Fredericks, A. C. Reimsschuessel, J. Polym. Sci. Part A 10, 1337 (1972); H. D. Chanzy, P. Smith, J. F. Revol, J. Polym. Sci. 24, 557 (1986).
    [CrossRef]
  10. F. W. Billmeyer, J. Appl. Phys. 18, 431 (1947).
    [CrossRef]
  11. Recently, a birefringence with the same order of magnitude was found on a similar suspension by optical turbidity measurements in samples diluted with water–glycerol solutions [T. Bellini, R. Piazza, C. Sozzi, V. Degiorgio, Europhys. Lett. 7, 561 (1988)].
    [CrossRef]

1988 (3)

R. Pizzoferrato, M. Marinelli, U. Zammit, F. Scudieri, S. Martellucci, M. Romagnoli, Opt. Commun. 68, 231 (1988).
[CrossRef]

B. Bobbs, R. Shih, R. Fetterman, Appl. Phys. Lett. 52, 4 (1988).
[CrossRef]

Recently, a birefringence with the same order of magnitude was found on a similar suspension by optical turbidity measurements in samples diluted with water–glycerol solutions [T. Bellini, R. Piazza, C. Sozzi, V. Degiorgio, Europhys. Lett. 7, 561 (1988)].
[CrossRef]

1985 (1)

D. Rogovin, Phys. Rev. A 32, 2837 (1985).
[CrossRef] [PubMed]

1984 (1)

1981 (1)

1976 (1)

See, e.g., E. G. Hanson, Y. R. Shen, G. K. L. Wong, Phys. Rev. 14, 1281 (1976).
[CrossRef]

1972 (1)

J. R. Forrest, M. A. Evanco, R. J. Fredericks, A. C. Reimsschuessel, J. Polym. Sci. Part A 10, 1337 (1972); H. D. Chanzy, P. Smith, J. F. Revol, J. Polym. Sci. 24, 557 (1986).
[CrossRef]

1947 (1)

F. W. Billmeyer, J. Appl. Phys. 18, 431 (1947).
[CrossRef]

Ashkin, A.

Bellini, T.

Recently, a birefringence with the same order of magnitude was found on a similar suspension by optical turbidity measurements in samples diluted with water–glycerol solutions [T. Bellini, R. Piazza, C. Sozzi, V. Degiorgio, Europhys. Lett. 7, 561 (1988)].
[CrossRef]

Billmeyer, F. W.

F. W. Billmeyer, J. Appl. Phys. 18, 431 (1947).
[CrossRef]

Bobbs, B.

B. Bobbs, R. Shih, R. Fetterman, Appl. Phys. Lett. 52, 4 (1988).
[CrossRef]

Degiorgio, V.

Recently, a birefringence with the same order of magnitude was found on a similar suspension by optical turbidity measurements in samples diluted with water–glycerol solutions [T. Bellini, R. Piazza, C. Sozzi, V. Degiorgio, Europhys. Lett. 7, 561 (1988)].
[CrossRef]

Evanco, M. A.

J. R. Forrest, M. A. Evanco, R. J. Fredericks, A. C. Reimsschuessel, J. Polym. Sci. Part A 10, 1337 (1972); H. D. Chanzy, P. Smith, J. F. Revol, J. Polym. Sci. 24, 557 (1986).
[CrossRef]

Fetterman, R.

B. Bobbs, R. Shih, R. Fetterman, Appl. Phys. Lett. 52, 4 (1988).
[CrossRef]

Forrest, J. R.

J. R. Forrest, M. A. Evanco, R. J. Fredericks, A. C. Reimsschuessel, J. Polym. Sci. Part A 10, 1337 (1972); H. D. Chanzy, P. Smith, J. F. Revol, J. Polym. Sci. 24, 557 (1986).
[CrossRef]

Fredericks, R. J.

J. R. Forrest, M. A. Evanco, R. J. Fredericks, A. C. Reimsschuessel, J. Polym. Sci. Part A 10, 1337 (1972); H. D. Chanzy, P. Smith, J. F. Revol, J. Polym. Sci. 24, 557 (1986).
[CrossRef]

Hanson, E. G.

See, e.g., E. G. Hanson, Y. R. Shen, G. K. L. Wong, Phys. Rev. 14, 1281 (1976).
[CrossRef]

Marinelli, M.

R. Pizzoferrato, M. Marinelli, U. Zammit, F. Scudieri, S. Martellucci, M. Romagnoli, Opt. Commun. 68, 231 (1988).
[CrossRef]

Martellucci, S.

R. Pizzoferrato, M. Marinelli, U. Zammit, F. Scudieri, S. Martellucci, M. Romagnoli, Opt. Commun. 68, 231 (1988).
[CrossRef]

Piazza, R.

Recently, a birefringence with the same order of magnitude was found on a similar suspension by optical turbidity measurements in samples diluted with water–glycerol solutions [T. Bellini, R. Piazza, C. Sozzi, V. Degiorgio, Europhys. Lett. 7, 561 (1988)].
[CrossRef]

Pizzoferrato, R.

R. Pizzoferrato, M. Marinelli, U. Zammit, F. Scudieri, S. Martellucci, M. Romagnoli, Opt. Commun. 68, 231 (1988).
[CrossRef]

Reimsschuessel, A. C.

J. R. Forrest, M. A. Evanco, R. J. Fredericks, A. C. Reimsschuessel, J. Polym. Sci. Part A 10, 1337 (1972); H. D. Chanzy, P. Smith, J. F. Revol, J. Polym. Sci. 24, 557 (1986).
[CrossRef]

Rogovin, D.

Romagnoli, M.

R. Pizzoferrato, M. Marinelli, U. Zammit, F. Scudieri, S. Martellucci, M. Romagnoli, Opt. Commun. 68, 231 (1988).
[CrossRef]

Sari, S. O.

Scudieri, F.

R. Pizzoferrato, M. Marinelli, U. Zammit, F. Scudieri, S. Martellucci, M. Romagnoli, Opt. Commun. 68, 231 (1988).
[CrossRef]

Shen, Y. R.

See, e.g., E. G. Hanson, Y. R. Shen, G. K. L. Wong, Phys. Rev. 14, 1281 (1976).
[CrossRef]

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), pp. 291–298.

Shih, R.

B. Bobbs, R. Shih, R. Fetterman, Appl. Phys. Lett. 52, 4 (1988).
[CrossRef]

Smith, P. W.

Sozzi, C.

Recently, a birefringence with the same order of magnitude was found on a similar suspension by optical turbidity measurements in samples diluted with water–glycerol solutions [T. Bellini, R. Piazza, C. Sozzi, V. Degiorgio, Europhys. Lett. 7, 561 (1988)].
[CrossRef]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941); M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Tomlinson, W. J.

Wong, G. K. L.

See, e.g., E. G. Hanson, Y. R. Shen, G. K. L. Wong, Phys. Rev. 14, 1281 (1976).
[CrossRef]

Zammit, U.

R. Pizzoferrato, M. Marinelli, U. Zammit, F. Scudieri, S. Martellucci, M. Romagnoli, Opt. Commun. 68, 231 (1988).
[CrossRef]

Appl. Phys. Lett. (1)

B. Bobbs, R. Shih, R. Fetterman, Appl. Phys. Lett. 52, 4 (1988).
[CrossRef]

Europhys. Lett. (1)

Recently, a birefringence with the same order of magnitude was found on a similar suspension by optical turbidity measurements in samples diluted with water–glycerol solutions [T. Bellini, R. Piazza, C. Sozzi, V. Degiorgio, Europhys. Lett. 7, 561 (1988)].
[CrossRef]

J. Appl. Phys. (1)

F. W. Billmeyer, J. Appl. Phys. 18, 431 (1947).
[CrossRef]

J. Polym. Sci. Part A (1)

J. R. Forrest, M. A. Evanco, R. J. Fredericks, A. C. Reimsschuessel, J. Polym. Sci. Part A 10, 1337 (1972); H. D. Chanzy, P. Smith, J. F. Revol, J. Polym. Sci. 24, 557 (1986).
[CrossRef]

Opt. Commun. (1)

R. Pizzoferrato, M. Marinelli, U. Zammit, F. Scudieri, S. Martellucci, M. Romagnoli, Opt. Commun. 68, 231 (1988).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

See, e.g., E. G. Hanson, Y. R. Shen, G. K. L. Wong, Phys. Rev. 14, 1281 (1976).
[CrossRef]

Phys. Rev. A (1)

D. Rogovin, Phys. Rev. A 32, 2837 (1985).
[CrossRef] [PubMed]

Other (2)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), pp. 291–298.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941); M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Laser-induced circular birefringence (circles) versus the input power for a sample with nh = 1.330. The expected cubic power dependence of the ellipse-rotation signal appears superimposed on the linear slope owing to scattered light.

Fig. 2
Fig. 2

The χ1221(3) term as function of the host liquid’s refractive index nh. The experimental data (the triangles) are shown with the theoretical prediction (the curves) for various values of the polymer n.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n c = 4 π n χ 1221 ( 3 ) ( ω , ω , ω , ω ) ( | E + | 2 | E | 2 ) ,
χ 1221 ( 3 ) ( ω , ω , ω , ω ) = N 15 ( α α ) 2 K b T ,

Metrics