Abstract

Second-harmonic radiation of several picowatts from various commercial laser diodes with several milliwatts of output power has been observed at various temperatures from 130 to 310 K. No temperature dependence of the conversion efficiency was observed. The spectral width of the second-harmonic radiation was limited by that of the fundamental radiation. An application of the internal second-harmonic radiation to a spectroscopic light source allowed observation of some absorption lines of potassium and aluminum.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ducuing, N. Bloembergen, Phys. Rev. Lett. 10, 474 (1963).
    [CrossRef]
  2. J. A. Armstrong, M. I. Nathan, A. W. Smith, Appl. Phys. Lett. 3, 68 (1963).
    [CrossRef]
  3. M. Garfinkel, W. E. Engeler, Appl. Phys. Lett. 3, 178 (1963).
    [CrossRef]
  4. M. D. Malmstrom, J. J. Schlikman, R. H. Kingston, J. Appl. Phys. 35, 248 (1964).
    [CrossRef]
  5. A. W. Smith, M. I. Nathan, J. A. Armstrong, A. E. Michel, K. Weiser, J. Appl. Phys. 35, 733 (1964).
    [CrossRef]
  6. T. Furuse, I. Sakuma, Opt. Commun. 35, 413 (1980).
    [CrossRef]
  7. N. Ogasawara, R. Ito, H. Rokukawa, Jpn. J. Appl. Phys. 26, 138 (1987).
  8. P. A. Franken, J. F. Ward, Rev. Mod. Phys. 35, 23 (1963).
    [CrossRef]
  9. H. R. Philipp, H. Ehrenreich, Phys. Rev. 129, 1550 (1963).
    [CrossRef]

1987

N. Ogasawara, R. Ito, H. Rokukawa, Jpn. J. Appl. Phys. 26, 138 (1987).

1980

T. Furuse, I. Sakuma, Opt. Commun. 35, 413 (1980).
[CrossRef]

1964

M. D. Malmstrom, J. J. Schlikman, R. H. Kingston, J. Appl. Phys. 35, 248 (1964).
[CrossRef]

A. W. Smith, M. I. Nathan, J. A. Armstrong, A. E. Michel, K. Weiser, J. Appl. Phys. 35, 733 (1964).
[CrossRef]

1963

J. Ducuing, N. Bloembergen, Phys. Rev. Lett. 10, 474 (1963).
[CrossRef]

J. A. Armstrong, M. I. Nathan, A. W. Smith, Appl. Phys. Lett. 3, 68 (1963).
[CrossRef]

M. Garfinkel, W. E. Engeler, Appl. Phys. Lett. 3, 178 (1963).
[CrossRef]

P. A. Franken, J. F. Ward, Rev. Mod. Phys. 35, 23 (1963).
[CrossRef]

H. R. Philipp, H. Ehrenreich, Phys. Rev. 129, 1550 (1963).
[CrossRef]

Armstrong, J. A.

A. W. Smith, M. I. Nathan, J. A. Armstrong, A. E. Michel, K. Weiser, J. Appl. Phys. 35, 733 (1964).
[CrossRef]

J. A. Armstrong, M. I. Nathan, A. W. Smith, Appl. Phys. Lett. 3, 68 (1963).
[CrossRef]

Bloembergen, N.

J. Ducuing, N. Bloembergen, Phys. Rev. Lett. 10, 474 (1963).
[CrossRef]

Ducuing, J.

J. Ducuing, N. Bloembergen, Phys. Rev. Lett. 10, 474 (1963).
[CrossRef]

Ehrenreich, H.

H. R. Philipp, H. Ehrenreich, Phys. Rev. 129, 1550 (1963).
[CrossRef]

Engeler, W. E.

M. Garfinkel, W. E. Engeler, Appl. Phys. Lett. 3, 178 (1963).
[CrossRef]

Franken, P. A.

P. A. Franken, J. F. Ward, Rev. Mod. Phys. 35, 23 (1963).
[CrossRef]

Furuse, T.

T. Furuse, I. Sakuma, Opt. Commun. 35, 413 (1980).
[CrossRef]

Garfinkel, M.

M. Garfinkel, W. E. Engeler, Appl. Phys. Lett. 3, 178 (1963).
[CrossRef]

Ito, R.

N. Ogasawara, R. Ito, H. Rokukawa, Jpn. J. Appl. Phys. 26, 138 (1987).

Kingston, R. H.

M. D. Malmstrom, J. J. Schlikman, R. H. Kingston, J. Appl. Phys. 35, 248 (1964).
[CrossRef]

Malmstrom, M. D.

M. D. Malmstrom, J. J. Schlikman, R. H. Kingston, J. Appl. Phys. 35, 248 (1964).
[CrossRef]

Michel, A. E.

A. W. Smith, M. I. Nathan, J. A. Armstrong, A. E. Michel, K. Weiser, J. Appl. Phys. 35, 733 (1964).
[CrossRef]

Nathan, M. I.

A. W. Smith, M. I. Nathan, J. A. Armstrong, A. E. Michel, K. Weiser, J. Appl. Phys. 35, 733 (1964).
[CrossRef]

J. A. Armstrong, M. I. Nathan, A. W. Smith, Appl. Phys. Lett. 3, 68 (1963).
[CrossRef]

Ogasawara, N.

N. Ogasawara, R. Ito, H. Rokukawa, Jpn. J. Appl. Phys. 26, 138 (1987).

Philipp, H. R.

H. R. Philipp, H. Ehrenreich, Phys. Rev. 129, 1550 (1963).
[CrossRef]

Rokukawa, H.

N. Ogasawara, R. Ito, H. Rokukawa, Jpn. J. Appl. Phys. 26, 138 (1987).

Sakuma, I.

T. Furuse, I. Sakuma, Opt. Commun. 35, 413 (1980).
[CrossRef]

Schlikman, J. J.

M. D. Malmstrom, J. J. Schlikman, R. H. Kingston, J. Appl. Phys. 35, 248 (1964).
[CrossRef]

Smith, A. W.

A. W. Smith, M. I. Nathan, J. A. Armstrong, A. E. Michel, K. Weiser, J. Appl. Phys. 35, 733 (1964).
[CrossRef]

J. A. Armstrong, M. I. Nathan, A. W. Smith, Appl. Phys. Lett. 3, 68 (1963).
[CrossRef]

Ward, J. F.

P. A. Franken, J. F. Ward, Rev. Mod. Phys. 35, 23 (1963).
[CrossRef]

Weiser, K.

A. W. Smith, M. I. Nathan, J. A. Armstrong, A. E. Michel, K. Weiser, J. Appl. Phys. 35, 733 (1964).
[CrossRef]

Appl. Phys. Lett.

J. A. Armstrong, M. I. Nathan, A. W. Smith, Appl. Phys. Lett. 3, 68 (1963).
[CrossRef]

M. Garfinkel, W. E. Engeler, Appl. Phys. Lett. 3, 178 (1963).
[CrossRef]

J. Appl. Phys.

M. D. Malmstrom, J. J. Schlikman, R. H. Kingston, J. Appl. Phys. 35, 248 (1964).
[CrossRef]

A. W. Smith, M. I. Nathan, J. A. Armstrong, A. E. Michel, K. Weiser, J. Appl. Phys. 35, 733 (1964).
[CrossRef]

Jpn. J. Appl. Phys.

N. Ogasawara, R. Ito, H. Rokukawa, Jpn. J. Appl. Phys. 26, 138 (1987).

Opt. Commun.

T. Furuse, I. Sakuma, Opt. Commun. 35, 413 (1980).
[CrossRef]

Phys. Rev.

H. R. Philipp, H. Ehrenreich, Phys. Rev. 129, 1550 (1963).
[CrossRef]

Phys. Rev. Lett.

J. Ducuing, N. Bloembergen, Phys. Rev. Lett. 10, 474 (1963).
[CrossRef]

Rev. Mod. Phys.

P. A. Franken, J. F. Ward, Rev. Mod. Phys. 35, 23 (1963).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. CCD, charge-coupled device; F.P. INT, Fabry–Perot interferometer.

Fig. 2
Fig. 2

Observed square-law dependence in the second-harmonic generation in an AlGaAs laser diode at various temperatures. 100 nA corresponds to approximately 10 pW. The hump in the harmonic power at lower temperatures was due to multimode oscillation.

Fig. 3
Fig. 3

Observed spectrum of the second resonance line of potassium at 404.721 nm and the transmission of the fundamental radiation through a 10-cm Fabry–Perot interferometer. The resonance peaks were used as frequency markers for the second-harmonic radiation. The temperature of the laser was approximately 200 K, and that of the oven cell was 360 K.

Fig. 4
Fig. 4

Observed spectrum of the resonance line of aluminum at 396.153 nm. The temperature of the laser was approximately 140 K, and that of the oven was 1200 K. The poor signal-to-noise ratio in comparison with that in Fig. 3 was due to low power of the second harmonics and strong background radiation from the oven.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

χ ( 2 ) = 5 . 2 × 10 27 × α 2 ( s P s ) 1 / 2 / P f ,

Metrics