Abstract

Opto-optical switching of a 1.06-μm signal beam by another 1.06-μm control beam has been observed in CdTe:In. The switching is caused by the photocharge created by the control beam and the resultant electric-field shielding. This effect can be switched in microseconds and takes advantage of the high figure of merit (n3r/) of CdTe.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Jewell, M. C. Rushford, H. M. Gibbs, Appl. Phys. Lett. 44, 172 (1984).
    [CrossRef]
  2. J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarion, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 46, 918 (1985).
    [CrossRef]
  3. D. Sarid, R. S. Jameson, R. K. Hickernell, Opt. Lett. 9, 159 (1984).
    [CrossRef] [PubMed]
  4. G. T. Sincerbox, G. Roosen, Appl. Opt. 22, 690 (1983).
    [CrossRef] [PubMed]
  5. P. D. Henshaw, Appl. Opt. 21, 2323 (1982).
    [CrossRef] [PubMed]
  6. D. Rak, I. Ledoux, J. P. Huignard, Opt. Commun. 49, 302 (1984).
    [CrossRef]
  7. H. Yajima, E. Sudo, J. Yumoto, K. Kashiwa, Appl. Phys. Lett. 45, 214 (1984).
    [CrossRef]
  8. K. Tada, Y. Kuhara, M. Tatsumi, T. Yamaguchi, Appl. Opt. 21, 2953 (1982).
    [CrossRef] [PubMed]
  9. K. Tanaka, A. Odajima, Appl. Phys. Lett. 38, 481 (1981).
    [CrossRef]
  10. A. M. Glass, Mater. Res. Bull. 16, 36 (1988).
  11. A. M. Glass, Science 235, 1003 (1987).
    [CrossRef] [PubMed]
  12. R. B. Bylsma, P. M. Bridenbaugh, D. H. Olson, A. M. Glass, Appl. Phys. Lett. 51, 889 (1987).
    [CrossRef]
  13. K. Zanio, Semiconductors and Semimetals. Vol. 13. Cadmium Telluride (Academic, New York, 1978).
  14. T. Ido, A. Heurtel, R. Triboulet, Y. Marfing, J. Phys. Chem. Solids 48, 781 (1987).
    [CrossRef]
  15. S. Yamada, J. Phys. Soc. Jpn. 17, 645 (1962).
    [CrossRef]
  16. W. H. Steier, J. Kumar, M. Ziari, Appl. Phys. Lett. 53, 840 (1988).
    [CrossRef]
  17. M. B. Klein, Opt. Lett. 9, 350 (1984).
    [CrossRef] [PubMed]
  18. B. K. Ridley, P. H. Wisbey, Br. J. Appl. Phys. 18, 761 (1967).
    [CrossRef]
  19. H. Rajbenbach, J. M. Verdiell, J. P. Huignard, Appl. Phys. Lett. 53, 541 (1988).
    [CrossRef]

1988 (3)

A. M. Glass, Mater. Res. Bull. 16, 36 (1988).

H. Rajbenbach, J. M. Verdiell, J. P. Huignard, Appl. Phys. Lett. 53, 541 (1988).
[CrossRef]

W. H. Steier, J. Kumar, M. Ziari, Appl. Phys. Lett. 53, 840 (1988).
[CrossRef]

1987 (3)

A. M. Glass, Science 235, 1003 (1987).
[CrossRef] [PubMed]

R. B. Bylsma, P. M. Bridenbaugh, D. H. Olson, A. M. Glass, Appl. Phys. Lett. 51, 889 (1987).
[CrossRef]

T. Ido, A. Heurtel, R. Triboulet, Y. Marfing, J. Phys. Chem. Solids 48, 781 (1987).
[CrossRef]

1985 (1)

J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarion, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 46, 918 (1985).
[CrossRef]

1984 (5)

D. Rak, I. Ledoux, J. P. Huignard, Opt. Commun. 49, 302 (1984).
[CrossRef]

H. Yajima, E. Sudo, J. Yumoto, K. Kashiwa, Appl. Phys. Lett. 45, 214 (1984).
[CrossRef]

J. L. Jewell, M. C. Rushford, H. M. Gibbs, Appl. Phys. Lett. 44, 172 (1984).
[CrossRef]

D. Sarid, R. S. Jameson, R. K. Hickernell, Opt. Lett. 9, 159 (1984).
[CrossRef] [PubMed]

M. B. Klein, Opt. Lett. 9, 350 (1984).
[CrossRef] [PubMed]

1983 (1)

1982 (2)

1981 (1)

K. Tanaka, A. Odajima, Appl. Phys. Lett. 38, 481 (1981).
[CrossRef]

1967 (1)

B. K. Ridley, P. H. Wisbey, Br. J. Appl. Phys. 18, 761 (1967).
[CrossRef]

1962 (1)

S. Yamada, J. Phys. Soc. Jpn. 17, 645 (1962).
[CrossRef]

Bridenbaugh, P. M.

R. B. Bylsma, P. M. Bridenbaugh, D. H. Olson, A. M. Glass, Appl. Phys. Lett. 51, 889 (1987).
[CrossRef]

Bylsma, R. B.

R. B. Bylsma, P. M. Bridenbaugh, D. H. Olson, A. M. Glass, Appl. Phys. Lett. 51, 889 (1987).
[CrossRef]

Gibbs, H. M.

J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarion, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 46, 918 (1985).
[CrossRef]

J. L. Jewell, M. C. Rushford, H. M. Gibbs, Appl. Phys. Lett. 44, 172 (1984).
[CrossRef]

Glass, A. M.

A. M. Glass, Mater. Res. Bull. 16, 36 (1988).

A. M. Glass, Science 235, 1003 (1987).
[CrossRef] [PubMed]

R. B. Bylsma, P. M. Bridenbaugh, D. H. Olson, A. M. Glass, Appl. Phys. Lett. 51, 889 (1987).
[CrossRef]

Gossard, A. C.

J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarion, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 46, 918 (1985).
[CrossRef]

Henshaw, P. D.

Heurtel, A.

T. Ido, A. Heurtel, R. Triboulet, Y. Marfing, J. Phys. Chem. Solids 48, 781 (1987).
[CrossRef]

Hickernell, R. K.

Huignard, J. P.

H. Rajbenbach, J. M. Verdiell, J. P. Huignard, Appl. Phys. Lett. 53, 541 (1988).
[CrossRef]

D. Rak, I. Ledoux, J. P. Huignard, Opt. Commun. 49, 302 (1984).
[CrossRef]

Ido, T.

T. Ido, A. Heurtel, R. Triboulet, Y. Marfing, J. Phys. Chem. Solids 48, 781 (1987).
[CrossRef]

Jameson, R. S.

Jewell, J. L.

J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarion, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 46, 918 (1985).
[CrossRef]

J. L. Jewell, M. C. Rushford, H. M. Gibbs, Appl. Phys. Lett. 44, 172 (1984).
[CrossRef]

Kashiwa, K.

H. Yajima, E. Sudo, J. Yumoto, K. Kashiwa, Appl. Phys. Lett. 45, 214 (1984).
[CrossRef]

Klein, M. B.

Kuhara, Y.

Kumar, J.

W. H. Steier, J. Kumar, M. Ziari, Appl. Phys. Lett. 53, 840 (1988).
[CrossRef]

Ledoux, I.

D. Rak, I. Ledoux, J. P. Huignard, Opt. Commun. 49, 302 (1984).
[CrossRef]

Lee, Y. H.

J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarion, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 46, 918 (1985).
[CrossRef]

Marfing, Y.

T. Ido, A. Heurtel, R. Triboulet, Y. Marfing, J. Phys. Chem. Solids 48, 781 (1987).
[CrossRef]

Odajima, A.

K. Tanaka, A. Odajima, Appl. Phys. Lett. 38, 481 (1981).
[CrossRef]

Olson, D. H.

R. B. Bylsma, P. M. Bridenbaugh, D. H. Olson, A. M. Glass, Appl. Phys. Lett. 51, 889 (1987).
[CrossRef]

Peyghambarion, N.

J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarion, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 46, 918 (1985).
[CrossRef]

Rajbenbach, H.

H. Rajbenbach, J. M. Verdiell, J. P. Huignard, Appl. Phys. Lett. 53, 541 (1988).
[CrossRef]

Rak, D.

D. Rak, I. Ledoux, J. P. Huignard, Opt. Commun. 49, 302 (1984).
[CrossRef]

Ridley, B. K.

B. K. Ridley, P. H. Wisbey, Br. J. Appl. Phys. 18, 761 (1967).
[CrossRef]

Roosen, G.

Rushford, M. C.

J. L. Jewell, M. C. Rushford, H. M. Gibbs, Appl. Phys. Lett. 44, 172 (1984).
[CrossRef]

Sarid, D.

Sincerbox, G. T.

Steier, W. H.

W. H. Steier, J. Kumar, M. Ziari, Appl. Phys. Lett. 53, 840 (1988).
[CrossRef]

Sudo, E.

H. Yajima, E. Sudo, J. Yumoto, K. Kashiwa, Appl. Phys. Lett. 45, 214 (1984).
[CrossRef]

Tada, K.

Tanaka, K.

K. Tanaka, A. Odajima, Appl. Phys. Lett. 38, 481 (1981).
[CrossRef]

Tatsumi, M.

Triboulet, R.

T. Ido, A. Heurtel, R. Triboulet, Y. Marfing, J. Phys. Chem. Solids 48, 781 (1987).
[CrossRef]

Verdiell, J. M.

H. Rajbenbach, J. M. Verdiell, J. P. Huignard, Appl. Phys. Lett. 53, 541 (1988).
[CrossRef]

Warren, M.

J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarion, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 46, 918 (1985).
[CrossRef]

Wiegmann, W.

J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarion, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 46, 918 (1985).
[CrossRef]

Wisbey, P. H.

B. K. Ridley, P. H. Wisbey, Br. J. Appl. Phys. 18, 761 (1967).
[CrossRef]

Yajima, H.

H. Yajima, E. Sudo, J. Yumoto, K. Kashiwa, Appl. Phys. Lett. 45, 214 (1984).
[CrossRef]

Yamada, S.

S. Yamada, J. Phys. Soc. Jpn. 17, 645 (1962).
[CrossRef]

Yamaguchi, T.

Yumoto, J.

H. Yajima, E. Sudo, J. Yumoto, K. Kashiwa, Appl. Phys. Lett. 45, 214 (1984).
[CrossRef]

Zanio, K.

K. Zanio, Semiconductors and Semimetals. Vol. 13. Cadmium Telluride (Academic, New York, 1978).

Ziari, M.

W. H. Steier, J. Kumar, M. Ziari, Appl. Phys. Lett. 53, 840 (1988).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (7)

H. Rajbenbach, J. M. Verdiell, J. P. Huignard, Appl. Phys. Lett. 53, 541 (1988).
[CrossRef]

H. Yajima, E. Sudo, J. Yumoto, K. Kashiwa, Appl. Phys. Lett. 45, 214 (1984).
[CrossRef]

K. Tanaka, A. Odajima, Appl. Phys. Lett. 38, 481 (1981).
[CrossRef]

R. B. Bylsma, P. M. Bridenbaugh, D. H. Olson, A. M. Glass, Appl. Phys. Lett. 51, 889 (1987).
[CrossRef]

W. H. Steier, J. Kumar, M. Ziari, Appl. Phys. Lett. 53, 840 (1988).
[CrossRef]

J. L. Jewell, M. C. Rushford, H. M. Gibbs, Appl. Phys. Lett. 44, 172 (1984).
[CrossRef]

J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarion, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 46, 918 (1985).
[CrossRef]

Br. J. Appl. Phys. (1)

B. K. Ridley, P. H. Wisbey, Br. J. Appl. Phys. 18, 761 (1967).
[CrossRef]

J. Phys. Chem. Solids (1)

T. Ido, A. Heurtel, R. Triboulet, Y. Marfing, J. Phys. Chem. Solids 48, 781 (1987).
[CrossRef]

J. Phys. Soc. Jpn. (1)

S. Yamada, J. Phys. Soc. Jpn. 17, 645 (1962).
[CrossRef]

Mater. Res. Bull. (1)

A. M. Glass, Mater. Res. Bull. 16, 36 (1988).

Opt. Commun. (1)

D. Rak, I. Ledoux, J. P. Huignard, Opt. Commun. 49, 302 (1984).
[CrossRef]

Opt. Lett. (2)

Science (1)

A. M. Glass, Science 235, 1003 (1987).
[CrossRef] [PubMed]

Other (1)

K. Zanio, Semiconductors and Semimetals. Vol. 13. Cadmium Telluride (Academic, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Opto-optical switch in CdTe.

Fig. 2
Fig. 2

Steady-state signal-beam transmission into output 1 as a function of the control-beam intensity. The signal-beam intensity is fixed at 30 μW/cm2, and V = 3000 V.

Fig. 3
Fig. 3

Signal beam into output 1 (lower trace) when the chopped control beam fills the sample with an intensity of 30 mW/cm2. The upper trace is the photocurrent, which is negative going; the control beam is on when the photocurrent goes negative. The signal-beam intensity is 60 μW/cm2. The horizontal scale is 10 msec/division. The zero levels are indicated for each trace.

Fig. 4
Fig. 4

Switching time versus control-beam intensity.

Fig. 5
Fig. 5

Selection of signal-beam pulses by a control-beam pulse. The upper trace is the control pulse; the lower trace is the signal beam in output 1. The horizontal scale is 2.0 msec/division.

Fig. 6
Fig. 6

Moving-domain switching showing the signal-beam pulse in output 1, which occurs at the onset of the control pulse. The signal-beam intensity is 6 mW/cm2; the control-beam intensity is 30 mW/cm2. The horizontal scale is 10 msec/division.

Metrics