Abstract

We describe an optical polarization parallel logic gate that is based on the two orthogonal polarization states corresponding to the two states of a binary system. The logic gate employs a Pockels readout optical modulator (PROM) and 90° twisted nematic liquid-crystal cells (LCC’s). The PROM transforms the binary-coded intensities of the input images into two orthogonally polarized states of readout light. The LCC is employed as a linear polarization rotator that negates the logic state (1 or 0) of the input and output images. Two-dimensional real-time operation of 14 Boolean logic functions for two input images has been demonstrated.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. A. Horwitz, F. J. Corbett, Opt. Eng. 17, 353 (1978).
  2. T. Minemoto, K. Okamoto, K. Miyamoto, Appl. Opt. 24, 2055 (1985).
    [CrossRef] [PubMed]
  3. M. T. Fatehi, K. C. Wasmundt, S. A. Collins, Appl. Opt. 20, 2250 (1981).
    [CrossRef] [PubMed]
  4. F. T. S. Yu, Q. W. Song, X. J. Lu, Opt. Lett. 12, 962 (1987).
    [CrossRef] [PubMed]
  5. J. Tanida, Y. Ichioka, J. Opt. Soc. Am. 73, 800 (1983).
    [CrossRef]
  6. A. W. Lohmann, J. Weigelt, Appl. Opt. 26, 131 (1987).
    [CrossRef] [PubMed]
  7. P. Bayvel, M. McCall, R. V. Wright, Opt. Lett. 13, 27 (1988).
    [CrossRef] [PubMed]
  8. S. L. Hou, D. S. Oliver, Appl. Phys. Lett. 18, 325 (1971).
    [CrossRef]

1988 (1)

1987 (2)

1985 (1)

1983 (1)

1981 (1)

1978 (1)

B. A. Horwitz, F. J. Corbett, Opt. Eng. 17, 353 (1978).

1971 (1)

S. L. Hou, D. S. Oliver, Appl. Phys. Lett. 18, 325 (1971).
[CrossRef]

Bayvel, P.

Collins, S. A.

Corbett, F. J.

B. A. Horwitz, F. J. Corbett, Opt. Eng. 17, 353 (1978).

Fatehi, M. T.

Horwitz, B. A.

B. A. Horwitz, F. J. Corbett, Opt. Eng. 17, 353 (1978).

Hou, S. L.

S. L. Hou, D. S. Oliver, Appl. Phys. Lett. 18, 325 (1971).
[CrossRef]

Ichioka, Y.

Lohmann, A. W.

Lu, X. J.

McCall, M.

Minemoto, T.

Miyamoto, K.

Okamoto, K.

Oliver, D. S.

S. L. Hou, D. S. Oliver, Appl. Phys. Lett. 18, 325 (1971).
[CrossRef]

Song, Q. W.

Tanida, J.

Wasmundt, K. C.

Weigelt, J.

Wright, R. V.

Yu, F. T. S.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the PROM in which the polarizer P and the analyzer A are oriented along the [ 1 1 ¯ 0 ] and [110] axes of the BSO crystal, respectively.

Fig. 2
Fig. 2

Theoretical curve for transmission T of the 633-nm light versus exposure energy E of the 458-nm light for the PROM with α = 4.33 × 10−3 cm2/erg driven by V0 = Vπ = 4500 V.

Fig. 3
Fig. 3

Basic architecture for implementation of the optical parallel logic gate. A and B, input (write) lights having binary patterns; HM, half-mirror; DM, dichromatic mirror that reflects the readout light and transmits the write light; P, polarizer; F, low-pass optical filter; VD, external drive voltage (2 kV); SW, switch; A, analyzer whose transmission axis is set at a right angle to that of the polarizer.

Fig. 4
Fig. 4

Experimental results of 14 Boolean logic operations using the binary patterns A and B shown in Fig. 3.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T = sin 2 [ π V 0 exp ( α E ) / 2 V π ]
α = e k μ τ / C d 2 ,
A + B ¯ = A ¯ B ¯ ( NOR ) , A ¯ + B ¯ = A B ¯ , A + B ¯ ¯ = A ¯ B , A ¯ + B ¯ ¯ = A B ( AND ) .
A B ¯ + A ¯ B = A B ( XOR ) , A B + A ¯ B ¯ = A B ¯ ( NXOR ) ,

Metrics