Abstract

Changes in the refractive index of Ti:Al2O3 induced by 10-nsec, 532-nm pump pulses from a frequency-doubled Nd:YAG laser have been measured interferometrically at 632.8 nm for signal polarizations parallel (π) and perpendicular (σ) to the c axis. The nonthermal portion of these changes decays on a 3-μsec time scale characteristic of the fluorescence lifetime of Ti3+. For the σ polarization, the nonthermal index change is equal to the concentration of excited Ti3+ ions times (4 ± 2) × 10−24 cm3. The change for the π polarization is lower by a factor of 3.7 ± 0.6. The average change is consistent with the value estimated from a harmonic oscillator model that considers virtual transitions to a charge-transfer band.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Moulton, Opt. News 8(6), 9 (1982).
    [CrossRef]
  2. A. Sanchez, R. E. Fahey, A. J. Strauss, R. L. Aggarwal, Opt. Lett. 11, 363 (1986).
    [CrossRef] [PubMed]
  3. P. A. Schulz, IEEE J. Quantum Electron. QE-24, 1039 (1988).
    [CrossRef]
  4. C. H. Muller, D. D. Lowenthal, K. W. Kangas, R. A. Hamil, G. C. Tisone, Opt. Lett. 13, 380 (1988).
    [CrossRef]
  5. A. Mooradian, Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173-0073 (personal communication).
  6. K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, IEEE J. Quantum Electron. QE-24, 1016 (1988).
    [CrossRef]
  7. P. F. Moulton, J. Opt. Soc. Am. B 3, 125 (1986).
    [CrossRef]
  8. I. S. Gorban, G. L. Kononchuk, Zh. Prikl. Spektrosk. 8, 864 (1968) [J. Appl. Spectrosc. (USSR) 8, 522 (1968)]; N. A. Anisimov, G. L. Kononchuk, Sov. Phys. Solid State 10, 2491 (1969).
  9. T. N. C. Venkatesan, S. L. McCall, Appl. Phys. Lett. 30, 282 (1977).
    [CrossRef]
  10. T. Catunda, J. P. Andreeta, J. C. Castro, Appl. Opt. 25, 2391 (1986).
    [CrossRef] [PubMed]
  11. G. D. Baldwin, E. P. Riedel, J. Appl. Phys. 38, 2726 (1967).
    [CrossRef]
  12. M. A. Jeppesen, J. Opt. Soc. Am. 48, 629 (1958).
    [CrossRef]
  13. K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, Solid State Research Rep. DTIC-AD-A193448 (1987:3) (Lincoln Laboratory, Lexington, Mass., 1987), p. 17.
  14. H. H. Tippins, Phys. Rev. 1, 126 (1970).
    [CrossRef]

1988

P. A. Schulz, IEEE J. Quantum Electron. QE-24, 1039 (1988).
[CrossRef]

C. H. Muller, D. D. Lowenthal, K. W. Kangas, R. A. Hamil, G. C. Tisone, Opt. Lett. 13, 380 (1988).
[CrossRef]

K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, IEEE J. Quantum Electron. QE-24, 1016 (1988).
[CrossRef]

1986

1982

P. Moulton, Opt. News 8(6), 9 (1982).
[CrossRef]

1977

T. N. C. Venkatesan, S. L. McCall, Appl. Phys. Lett. 30, 282 (1977).
[CrossRef]

1970

H. H. Tippins, Phys. Rev. 1, 126 (1970).
[CrossRef]

1968

I. S. Gorban, G. L. Kononchuk, Zh. Prikl. Spektrosk. 8, 864 (1968) [J. Appl. Spectrosc. (USSR) 8, 522 (1968)]; N. A. Anisimov, G. L. Kononchuk, Sov. Phys. Solid State 10, 2491 (1969).

1967

G. D. Baldwin, E. P. Riedel, J. Appl. Phys. 38, 2726 (1967).
[CrossRef]

1958

Aggarwal, R. L.

K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, IEEE J. Quantum Electron. QE-24, 1016 (1988).
[CrossRef]

A. Sanchez, R. E. Fahey, A. J. Strauss, R. L. Aggarwal, Opt. Lett. 11, 363 (1986).
[CrossRef] [PubMed]

K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, Solid State Research Rep. DTIC-AD-A193448 (1987:3) (Lincoln Laboratory, Lexington, Mass., 1987), p. 17.

Andreeta, J. P.

Baldwin, G. D.

G. D. Baldwin, E. P. Riedel, J. Appl. Phys. 38, 2726 (1967).
[CrossRef]

Castro, J. C.

Catunda, T.

Fahey, R. E.

K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, IEEE J. Quantum Electron. QE-24, 1016 (1988).
[CrossRef]

A. Sanchez, R. E. Fahey, A. J. Strauss, R. L. Aggarwal, Opt. Lett. 11, 363 (1986).
[CrossRef] [PubMed]

K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, Solid State Research Rep. DTIC-AD-A193448 (1987:3) (Lincoln Laboratory, Lexington, Mass., 1987), p. 17.

Gorban, I. S.

I. S. Gorban, G. L. Kononchuk, Zh. Prikl. Spektrosk. 8, 864 (1968) [J. Appl. Spectrosc. (USSR) 8, 522 (1968)]; N. A. Anisimov, G. L. Kononchuk, Sov. Phys. Solid State 10, 2491 (1969).

Hamil, R. A.

Jeppesen, M. A.

Kangas, K. W.

Kononchuk, G. L.

I. S. Gorban, G. L. Kononchuk, Zh. Prikl. Spektrosk. 8, 864 (1968) [J. Appl. Spectrosc. (USSR) 8, 522 (1968)]; N. A. Anisimov, G. L. Kononchuk, Sov. Phys. Solid State 10, 2491 (1969).

Lowenthal, D. D.

McCall, S. L.

T. N. C. Venkatesan, S. L. McCall, Appl. Phys. Lett. 30, 282 (1977).
[CrossRef]

Mooradian, A.

A. Mooradian, Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173-0073 (personal communication).

Moulton, P.

P. Moulton, Opt. News 8(6), 9 (1982).
[CrossRef]

Moulton, P. F.

Muller, C. H.

Riedel, E. P.

G. D. Baldwin, E. P. Riedel, J. Appl. Phys. 38, 2726 (1967).
[CrossRef]

Sanchez, A.

Schulz, P. A.

P. A. Schulz, IEEE J. Quantum Electron. QE-24, 1039 (1988).
[CrossRef]

Strauss, A. J.

K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, IEEE J. Quantum Electron. QE-24, 1016 (1988).
[CrossRef]

A. Sanchez, R. E. Fahey, A. J. Strauss, R. L. Aggarwal, Opt. Lett. 11, 363 (1986).
[CrossRef] [PubMed]

K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, Solid State Research Rep. DTIC-AD-A193448 (1987:3) (Lincoln Laboratory, Lexington, Mass., 1987), p. 17.

Tippins, H. H.

H. H. Tippins, Phys. Rev. 1, 126 (1970).
[CrossRef]

Tisone, G. C.

Venkatesan, T. N. C.

T. N. C. Venkatesan, S. L. McCall, Appl. Phys. Lett. 30, 282 (1977).
[CrossRef]

Wall, K. F.

K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, IEEE J. Quantum Electron. QE-24, 1016 (1988).
[CrossRef]

K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, Solid State Research Rep. DTIC-AD-A193448 (1987:3) (Lincoln Laboratory, Lexington, Mass., 1987), p. 17.

Appl. Opt.

Appl. Phys. Lett.

T. N. C. Venkatesan, S. L. McCall, Appl. Phys. Lett. 30, 282 (1977).
[CrossRef]

IEEE J. Quantum Electron.

K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, IEEE J. Quantum Electron. QE-24, 1016 (1988).
[CrossRef]

P. A. Schulz, IEEE J. Quantum Electron. QE-24, 1039 (1988).
[CrossRef]

J. Appl. Phys.

G. D. Baldwin, E. P. Riedel, J. Appl. Phys. 38, 2726 (1967).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Opt. Lett.

Opt. News

P. Moulton, Opt. News 8(6), 9 (1982).
[CrossRef]

Phys. Rev.

H. H. Tippins, Phys. Rev. 1, 126 (1970).
[CrossRef]

Zh. Prikl. Spektrosk.

I. S. Gorban, G. L. Kononchuk, Zh. Prikl. Spektrosk. 8, 864 (1968) [J. Appl. Spectrosc. (USSR) 8, 522 (1968)]; N. A. Anisimov, G. L. Kononchuk, Sov. Phys. Solid State 10, 2491 (1969).

Other

A. Mooradian, Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173-0073 (personal communication).

K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, Solid State Research Rep. DTIC-AD-A193448 (1987:3) (Lincoln Laboratory, Lexington, Mass., 1987), p. 17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the Mach–Zehnder interferometer used for measuring optically induced changes in the refractive index of Ti:Al2O3 at 632.8 nm. BS1 and BS2, beam splitters with 50% reflectance and transmittance; M1 and M2, mirrors, with M1 mounted on a piezoelectric transducer.

Fig. 2
Fig. 2

Time dependence of the interferometric signal at 632.8 nm in the σ polarization for a Ti:Al2O3 sample pumped with 532-nm pulses (1.7 J/cm2) in the π polarization. Imin and Imax are the minimum and maximum intensities of the interference pattern before pumping. (a) Signal on the microsecond time scale: t1 denotes the time for the greatest change in intensity, and t2 denotes the time at which the change due to excitation of Ti3+ ions becomes negligible. (b) Signal on the millisecond time scale, illustrating the decay of the thermal component.

Fig. 3
Fig. 3

Optically induced change in the refractive index at 632.8 nm for the π and σ polarizations as a function of the 532-nm pump fluence (π polarization). The data are shown as filled circles, and the straight lines are linear fits to the data constrained to pass through the origin.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I min + 1 2 ( I max I min ) { 1 + cos [ ϕ 0 + Δ ϕ ( t ) ] } ,
| Δ n σ | = | Δ ϕ ( t 1 ) Δ ϕ ( t 2 ) | ( λ s / 2 π L e ) ,
Δ n N j = χ j ( ω s ) 2 n s = 1 2 n s ( e 2 m 0 ) k f jk ω jk 2 ω s 2

Metrics