Abstract

The reflection properties of an interface between a dielectric and a saturable dye solution are investigated. A simple phenomenological approach describes the switching behavior, including self-phase-modulation effects induced at the interface.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Kaplan, Sov. Phys. JETP 45, 896 (1978).
  2. W. J. Tomlinson, J. E. Gordon, P. W. Smith, A. E. Kaplan, Appl. Opt. 21, 2041 (1982);P. W. Smith, W. J. Tomlinson, P. J. Maloney, A. E. Kaplan, Opt. Lett. 7, 57 (1982).
    [CrossRef] [PubMed]
  3. G. I. Stegeman, C. T. Seaton, J. Ariyazu, R. F. Wallis, A. A. Maradudin, J. Appl. Phys. 58, 2453 (1985).
    [CrossRef]
  4. P. W. Smith, W. J. Tomlinson, IEEE J. Quantum Electron. QE-20, 30 (1984).
    [CrossRef]
  5. M. Mohebi, B. Jean-Jean, J. C. Diels, in Proceedings of the International Conference on Lasers '88 (SPS, McLean, Va., 1988), pp. 379–382.
  6. H. Vanherzeele, H. J. Mackey, J.-C. Diels, Appl. Opt. 23, 2056 (1984).
    [CrossRef] [PubMed]
  7. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1984).
  8. M. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, Opt. Commun. 61, 357 (1989).
    [CrossRef]
  9. W. Dietel, J. J. Fontaine, J.-C. Diels, Opt. Lett. 8, 4 (1983).
    [CrossRef] [PubMed]
  10. J.-C. Diels, J. J. Fontaine, I. C. McMichael, F. Simoni, Appl. Opt. 24, 1270 (1985).
    [CrossRef] [PubMed]
  11. J.-C. Diels, in Dye Lasers: Principles and Applications, F. Duarte, L. Hillman, eds. (Academic, Orlando, Fla., 1989), Chap. 3.

1989

M. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, Opt. Commun. 61, 357 (1989).
[CrossRef]

1985

J.-C. Diels, J. J. Fontaine, I. C. McMichael, F. Simoni, Appl. Opt. 24, 1270 (1985).
[CrossRef] [PubMed]

G. I. Stegeman, C. T. Seaton, J. Ariyazu, R. F. Wallis, A. A. Maradudin, J. Appl. Phys. 58, 2453 (1985).
[CrossRef]

1984

P. W. Smith, W. J. Tomlinson, IEEE J. Quantum Electron. QE-20, 30 (1984).
[CrossRef]

H. Vanherzeele, H. J. Mackey, J.-C. Diels, Appl. Opt. 23, 2056 (1984).
[CrossRef] [PubMed]

1983

1982

1978

A. E. Kaplan, Sov. Phys. JETP 45, 896 (1978).

Ariyazu, J.

G. I. Stegeman, C. T. Seaton, J. Ariyazu, R. F. Wallis, A. A. Maradudin, J. Appl. Phys. 58, 2453 (1985).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1984).

Diels, J. C.

M. Mohebi, B. Jean-Jean, J. C. Diels, in Proceedings of the International Conference on Lasers '88 (SPS, McLean, Va., 1988), pp. 379–382.

Diels, J.-C.

Dietel, W.

Fontaine, J. J.

Gordon, J. E.

Gubbels, M.

M. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, Opt. Commun. 61, 357 (1989).
[CrossRef]

Jean-Jean, B.

M. Mohebi, B. Jean-Jean, J. C. Diels, in Proceedings of the International Conference on Lasers '88 (SPS, McLean, Va., 1988), pp. 379–382.

Kaplan, A. E.

Mackey, H. J.

Maradudin, A. A.

G. I. Stegeman, C. T. Seaton, J. Ariyazu, R. F. Wallis, A. A. Maradudin, J. Appl. Phys. 58, 2453 (1985).
[CrossRef]

McMichael, I. C.

Mohebi, M.

M. Mohebi, B. Jean-Jean, J. C. Diels, in Proceedings of the International Conference on Lasers '88 (SPS, McLean, Va., 1988), pp. 379–382.

Moloney, J. V.

M. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, Opt. Commun. 61, 357 (1989).
[CrossRef]

Seaton, C. T.

M. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, Opt. Commun. 61, 357 (1989).
[CrossRef]

G. I. Stegeman, C. T. Seaton, J. Ariyazu, R. F. Wallis, A. A. Maradudin, J. Appl. Phys. 58, 2453 (1985).
[CrossRef]

Simoni, F.

Smith, P. W.

Stegeman, G. I.

M. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, Opt. Commun. 61, 357 (1989).
[CrossRef]

G. I. Stegeman, C. T. Seaton, J. Ariyazu, R. F. Wallis, A. A. Maradudin, J. Appl. Phys. 58, 2453 (1985).
[CrossRef]

Tomlinson, W. J.

Vanherzeele, H.

Wallis, R. F.

G. I. Stegeman, C. T. Seaton, J. Ariyazu, R. F. Wallis, A. A. Maradudin, J. Appl. Phys. 58, 2453 (1985).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1984).

Wright, E. M.

M. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, Opt. Commun. 61, 357 (1989).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

P. W. Smith, W. J. Tomlinson, IEEE J. Quantum Electron. QE-20, 30 (1984).
[CrossRef]

J. Appl. Phys.

G. I. Stegeman, C. T. Seaton, J. Ariyazu, R. F. Wallis, A. A. Maradudin, J. Appl. Phys. 58, 2453 (1985).
[CrossRef]

Opt. Commun.

M. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, Opt. Commun. 61, 357 (1989).
[CrossRef]

Opt. Lett.

Sov. Phys. JETP

A. E. Kaplan, Sov. Phys. JETP 45, 896 (1978).

Other

J.-C. Diels, in Dye Lasers: Principles and Applications, F. Duarte, L. Hillman, eds. (Academic, Orlando, Fla., 1989), Chap. 3.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1984).

M. Mohebi, B. Jean-Jean, J. C. Diels, in Proceedings of the International Conference on Lasers '88 (SPS, McLean, Va., 1988), pp. 379–382.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Reflectivity versus the internal angle of incidence at an interface between fused silica and ethylene glycol (trace a) or a 5.6 mM/L solution of HIDCI in ethylene glycol (trace b). The solid curves are theoretical fits.

Fig. 2
Fig. 2

Reflectivity versus the incident energy density at the same interface as in Fig. 1, trace b. The angles of incidence are 78.51° (trace a), 78.19° (trace b), and 77.87° (trace c). The data points of trace d are for pure ethylene glycol. The solid curves are the results of theoretical calculations.

Fig. 3
Fig. 3

Instantaneous frequency versus time for the initial Gaussian pulse with intensity shown by the thin solid curve. The pulse duration (FWHM) is used as unit of time and frequency. The angle of incidence is 78.51°. The pulse energy is 10 times the saturation energy density. The nonlinear medium is a 5.6 mM/L solution of HIDCI in ethylene glycol. The thick solid curve, on resonance; dashed curve, one half-width above resonance; dotted curve, one half-width below resonance.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E t + ( z ) = 2 n ( z d z ) cos [ θ ( z d z ) ] n ( z ) cos [ θ ( z d z ) ] + n ( z d z ) cos [ θ ( z ) ] × E t + ( z d z ) exp ( i k · dr ) ,
E r ( z ) = n ( z + d z ) cos [ θ ( z ) ] n ( z ) cos [ θ ( z + d z ) ] n ( z + d z ) cos [ θ ( z ) ] ) + n ( z ) cos [ θ ( z + d z ) ] E t + ( z ) .
n = n s + n d exp ( | E + + E | 2 E s 2 T 1 d t ) ,
n av ( t ) = 0 z 1 I ( z , t ) n ( z , t ) d z / 0 z 1 I ( z , t ) d z .

Metrics