Abstract

A unique combination of the time-correlated photon-counting technique and single-photon avalanche diode detectors gives an accurate characterization of gain-switched semiconductor lasers with picosecond resolution. The high sensitivity and the clean shape of the time response reveal even small features (reflections and relaxation oscillations), making a true optimization of the laser-diode operation possible. The technique outperforms the standard characterization with ultrafast p-i-n photodiodes and a sampling oscilloscope. In addition, compared with other methods, it has favorable features that greatly simplify the measurement.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. V. O'Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, New York, 1983).
  2. S. Cova, G. Ripamonti, A. Lacaita, Nucl. Instrum. Methods Phys. Res. A 253, 482 (1987).
    [CrossRef]
  3. M. Ghioni, S. Cova, A. Lacaita, G. Ripamonti, Electron. Lett. 24, 1476 (1988).
    [CrossRef]
  4. S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, Rev. Sci. Instrum. 60, 1104 (1989).
    [CrossRef]
  5. Our SPAD detectors are currently used in the Picosecond Lifetime MicroScope PLμS, Edinburgh Instruments Ltd., Edinburgh, UK.
  6. S. Cova, A. Longoni, G. Ripamonti, IEEE Trans. Nucl. Sci. NS-29, 599 (1982).
    [CrossRef]
  7. R. H. Haitz, J. Appl. Phys. 36, 3123 (1965).
    [CrossRef]
  8. D. Bebelaar, Rev. Sci. Instrum. 50, 1629 (1979).
    [CrossRef] [PubMed]
  9. T. A. Louis, Deutsche Forschungs-und Versuchsanstalt für Luft-und Raumfah (DLR), Plataforma Solar de Al-meria, Apartado 649, Almeria, Spain (personal communication)
  10. C. G. Bethea, B. F. Levine, S. Cova, G. Ripamonti, Opt. Lett. 13, 233 (1988).
    [CrossRef] [PubMed]
  11. H. Kume, K. Koyama, K. Nagatsugawa, S. Suzuki, D. Fatlowitz, Appl. Opt. 27, 1170 (1988).
    [CrossRef] [PubMed]
  12. R. W. Wijnaendts Van Resandt, R. H. Vogel, S. W. Provencher, Rev. Sci. Instrum. 53, 1392 (1982).
    [CrossRef]
  13. H. J. Klein, D. Bimberg, H. Beneking, J. Kuhl, E. O. Goebel, Appl. Phys. Lett. 41, 394 (1982).
    [CrossRef]

1989 (1)

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, Rev. Sci. Instrum. 60, 1104 (1989).
[CrossRef]

1988 (3)

1987 (1)

S. Cova, G. Ripamonti, A. Lacaita, Nucl. Instrum. Methods Phys. Res. A 253, 482 (1987).
[CrossRef]

1982 (3)

S. Cova, A. Longoni, G. Ripamonti, IEEE Trans. Nucl. Sci. NS-29, 599 (1982).
[CrossRef]

R. W. Wijnaendts Van Resandt, R. H. Vogel, S. W. Provencher, Rev. Sci. Instrum. 53, 1392 (1982).
[CrossRef]

H. J. Klein, D. Bimberg, H. Beneking, J. Kuhl, E. O. Goebel, Appl. Phys. Lett. 41, 394 (1982).
[CrossRef]

1979 (1)

D. Bebelaar, Rev. Sci. Instrum. 50, 1629 (1979).
[CrossRef] [PubMed]

1965 (1)

R. H. Haitz, J. Appl. Phys. 36, 3123 (1965).
[CrossRef]

Bebelaar, D.

D. Bebelaar, Rev. Sci. Instrum. 50, 1629 (1979).
[CrossRef] [PubMed]

Beneking, H.

H. J. Klein, D. Bimberg, H. Beneking, J. Kuhl, E. O. Goebel, Appl. Phys. Lett. 41, 394 (1982).
[CrossRef]

Bethea, C. G.

Bimberg, D.

H. J. Klein, D. Bimberg, H. Beneking, J. Kuhl, E. O. Goebel, Appl. Phys. Lett. 41, 394 (1982).
[CrossRef]

Cova, S.

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, Rev. Sci. Instrum. 60, 1104 (1989).
[CrossRef]

M. Ghioni, S. Cova, A. Lacaita, G. Ripamonti, Electron. Lett. 24, 1476 (1988).
[CrossRef]

C. G. Bethea, B. F. Levine, S. Cova, G. Ripamonti, Opt. Lett. 13, 233 (1988).
[CrossRef] [PubMed]

S. Cova, G. Ripamonti, A. Lacaita, Nucl. Instrum. Methods Phys. Res. A 253, 482 (1987).
[CrossRef]

S. Cova, A. Longoni, G. Ripamonti, IEEE Trans. Nucl. Sci. NS-29, 599 (1982).
[CrossRef]

Fatlowitz, D.

Ghioni, M.

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, Rev. Sci. Instrum. 60, 1104 (1989).
[CrossRef]

M. Ghioni, S. Cova, A. Lacaita, G. Ripamonti, Electron. Lett. 24, 1476 (1988).
[CrossRef]

Goebel, E. O.

H. J. Klein, D. Bimberg, H. Beneking, J. Kuhl, E. O. Goebel, Appl. Phys. Lett. 41, 394 (1982).
[CrossRef]

Haitz, R. H.

R. H. Haitz, J. Appl. Phys. 36, 3123 (1965).
[CrossRef]

Klein, H. J.

H. J. Klein, D. Bimberg, H. Beneking, J. Kuhl, E. O. Goebel, Appl. Phys. Lett. 41, 394 (1982).
[CrossRef]

Koyama, K.

Kuhl, J.

H. J. Klein, D. Bimberg, H. Beneking, J. Kuhl, E. O. Goebel, Appl. Phys. Lett. 41, 394 (1982).
[CrossRef]

Kume, H.

Lacaita, A.

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, Rev. Sci. Instrum. 60, 1104 (1989).
[CrossRef]

M. Ghioni, S. Cova, A. Lacaita, G. Ripamonti, Electron. Lett. 24, 1476 (1988).
[CrossRef]

S. Cova, G. Ripamonti, A. Lacaita, Nucl. Instrum. Methods Phys. Res. A 253, 482 (1987).
[CrossRef]

Levine, B. F.

Longoni, A.

S. Cova, A. Longoni, G. Ripamonti, IEEE Trans. Nucl. Sci. NS-29, 599 (1982).
[CrossRef]

Louis, T. A.

T. A. Louis, Deutsche Forschungs-und Versuchsanstalt für Luft-und Raumfah (DLR), Plataforma Solar de Al-meria, Apartado 649, Almeria, Spain (personal communication)

Nagatsugawa, K.

O'Connor, D. V.

D. V. O'Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, New York, 1983).

Phillips, D.

D. V. O'Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, New York, 1983).

Provencher, S. W.

R. W. Wijnaendts Van Resandt, R. H. Vogel, S. W. Provencher, Rev. Sci. Instrum. 53, 1392 (1982).
[CrossRef]

Ripamonti, G.

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, Rev. Sci. Instrum. 60, 1104 (1989).
[CrossRef]

M. Ghioni, S. Cova, A. Lacaita, G. Ripamonti, Electron. Lett. 24, 1476 (1988).
[CrossRef]

C. G. Bethea, B. F. Levine, S. Cova, G. Ripamonti, Opt. Lett. 13, 233 (1988).
[CrossRef] [PubMed]

S. Cova, G. Ripamonti, A. Lacaita, Nucl. Instrum. Methods Phys. Res. A 253, 482 (1987).
[CrossRef]

S. Cova, A. Longoni, G. Ripamonti, IEEE Trans. Nucl. Sci. NS-29, 599 (1982).
[CrossRef]

Suzuki, S.

Vogel, R. H.

R. W. Wijnaendts Van Resandt, R. H. Vogel, S. W. Provencher, Rev. Sci. Instrum. 53, 1392 (1982).
[CrossRef]

Wijnaendts Van Resandt, R. W.

R. W. Wijnaendts Van Resandt, R. H. Vogel, S. W. Provencher, Rev. Sci. Instrum. 53, 1392 (1982).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. J. Klein, D. Bimberg, H. Beneking, J. Kuhl, E. O. Goebel, Appl. Phys. Lett. 41, 394 (1982).
[CrossRef]

Electron. Lett. (1)

M. Ghioni, S. Cova, A. Lacaita, G. Ripamonti, Electron. Lett. 24, 1476 (1988).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

S. Cova, A. Longoni, G. Ripamonti, IEEE Trans. Nucl. Sci. NS-29, 599 (1982).
[CrossRef]

J. Appl. Phys. (1)

R. H. Haitz, J. Appl. Phys. 36, 3123 (1965).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

S. Cova, G. Ripamonti, A. Lacaita, Nucl. Instrum. Methods Phys. Res. A 253, 482 (1987).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (3)

R. W. Wijnaendts Van Resandt, R. H. Vogel, S. W. Provencher, Rev. Sci. Instrum. 53, 1392 (1982).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, Rev. Sci. Instrum. 60, 1104 (1989).
[CrossRef]

D. Bebelaar, Rev. Sci. Instrum. 50, 1629 (1979).
[CrossRef] [PubMed]

Other (3)

T. A. Louis, Deutsche Forschungs-und Versuchsanstalt für Luft-und Raumfah (DLR), Plataforma Solar de Al-meria, Apartado 649, Almeria, Spain (personal communication)

Our SPAD detectors are currently used in the Picosecond Lifetime MicroScope PLμS, Edinburgh Instruments Ltd., Edinburgh, UK.

D. V. O'Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Simplified block diagram of the time-correlated single-photon-counting setup employed.

Fig. 2
Fig. 2

Waveform of an optical pulse from a laser diode at 833-nm wavelength (Hamamatsu 1308 picosecond light pulser) measured with (bottom) a SPAD detector in the TCPC apparatus of Fig. 1 and (top) an ultrafast p-i-n photodiode (Opto-Electronics PD15) and sampling oscilloscope (Tektronix with S4 sampling head).

Fig. 3
Fig. 3

Same as Fig. 2 but with a different laser diode, emitting at 785 nm (Opto-Electronics PPL30K785 pulsed diode-laser module).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t L 2 = t M 2 t R 2 ,
Δ t L = t M t L Δ t M + t R t L Δ t R
P m = h ν η ( R N τ ) 1 / 2 ,

Metrics