Abstract

A quasi-distributed polarimetric sensor employing a single length of polarization-preserving fiber is described. The sensing segments are identified by miniature rings that squeeze the fiber to couple power from one optical mode to the orthogonal mode while avoiding any mechanical damage to the fiber. A superluminescent-diode source allows us to exploit the coherent-multiplexing concept, which yields high resolution and high precision. Experimental results confirm this approach and point toward the development of a quasi-distributed sensor with polarimetric sensitivity, high spatial resolution, and fiber-optic mechanical integrity.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. O. Claus, J. C. Wade, J. Nondestr. Eval. 4, 23 (1984).
    [CrossRef]
  2. A. J. Rogers, Phys. Rep. 169, 99 (1988).
    [CrossRef]
  3. J. P. Dakin, C. A. Wade, Electron. Lett. 20, 53 (1984).
    [CrossRef]
  4. A. D. Kersey, K. L. Dorsey, A. Dandridge, Electron. Lett. 24, 689 (1988).
    [CrossRef]
  5. S. C. Rashleigh, IEEE J. Lightwave Technol. LT-1, 312 (1983).
    [CrossRef]
  6. A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Electron. Lett. 24, 474 (1988).
    [CrossRef]
  7. J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, IEEE J. Lightwave Technol. LT-3, 1062 (1985).
    [CrossRef]
  8. H. C. Lefevre, Proc. Soc. Photo-Opt. Instrum. Eng. 838, 86 (1987).
  9. K. Takada, J. Noda, K. Okamoto, Opt. Lett. 11, 680 (1986).
    [CrossRef] [PubMed]

1988 (3)

A. J. Rogers, Phys. Rep. 169, 99 (1988).
[CrossRef]

A. D. Kersey, K. L. Dorsey, A. Dandridge, Electron. Lett. 24, 689 (1988).
[CrossRef]

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Electron. Lett. 24, 474 (1988).
[CrossRef]

1987 (1)

H. C. Lefevre, Proc. Soc. Photo-Opt. Instrum. Eng. 838, 86 (1987).

1986 (1)

1985 (1)

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, IEEE J. Lightwave Technol. LT-3, 1062 (1985).
[CrossRef]

1984 (2)

J. P. Dakin, C. A. Wade, Electron. Lett. 20, 53 (1984).
[CrossRef]

R. O. Claus, J. C. Wade, J. Nondestr. Eval. 4, 23 (1984).
[CrossRef]

1983 (1)

S. C. Rashleigh, IEEE J. Lightwave Technol. LT-1, 312 (1983).
[CrossRef]

Brooks, J. L.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, IEEE J. Lightwave Technol. LT-3, 1062 (1985).
[CrossRef]

Claus, R. O.

R. O. Claus, J. C. Wade, J. Nondestr. Eval. 4, 23 (1984).
[CrossRef]

Dakin, J. P.

J. P. Dakin, C. A. Wade, Electron. Lett. 20, 53 (1984).
[CrossRef]

Dandridge, A.

A. D. Kersey, K. L. Dorsey, A. Dandridge, Electron. Lett. 24, 689 (1988).
[CrossRef]

Dorsey, K. L.

A. D. Kersey, K. L. Dorsey, A. Dandridge, Electron. Lett. 24, 689 (1988).
[CrossRef]

Farahi, F.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Electron. Lett. 24, 474 (1988).
[CrossRef]

Gerges, A. S.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Electron. Lett. 24, 474 (1988).
[CrossRef]

Jackson, D. A.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Electron. Lett. 24, 474 (1988).
[CrossRef]

Jones, J. D. C.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Electron. Lett. 24, 474 (1988).
[CrossRef]

Kersey, A. D.

A. D. Kersey, K. L. Dorsey, A. Dandridge, Electron. Lett. 24, 689 (1988).
[CrossRef]

Kim, B. Y.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, IEEE J. Lightwave Technol. LT-3, 1062 (1985).
[CrossRef]

Lefevre, H. C.

H. C. Lefevre, Proc. Soc. Photo-Opt. Instrum. Eng. 838, 86 (1987).

Newson, T. P.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Electron. Lett. 24, 474 (1988).
[CrossRef]

Noda, J.

Okamoto, K.

Rashleigh, S. C.

S. C. Rashleigh, IEEE J. Lightwave Technol. LT-1, 312 (1983).
[CrossRef]

Rogers, A. J.

A. J. Rogers, Phys. Rep. 169, 99 (1988).
[CrossRef]

Shaw, H. J.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, IEEE J. Lightwave Technol. LT-3, 1062 (1985).
[CrossRef]

Takada, K.

Tur, M.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, IEEE J. Lightwave Technol. LT-3, 1062 (1985).
[CrossRef]

Wade, C. A.

J. P. Dakin, C. A. Wade, Electron. Lett. 20, 53 (1984).
[CrossRef]

Wade, J. C.

R. O. Claus, J. C. Wade, J. Nondestr. Eval. 4, 23 (1984).
[CrossRef]

Wentworth, R. H.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, IEEE J. Lightwave Technol. LT-3, 1062 (1985).
[CrossRef]

Youngquist, R. C.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, IEEE J. Lightwave Technol. LT-3, 1062 (1985).
[CrossRef]

Electron. Lett. (3)

J. P. Dakin, C. A. Wade, Electron. Lett. 20, 53 (1984).
[CrossRef]

A. D. Kersey, K. L. Dorsey, A. Dandridge, Electron. Lett. 24, 689 (1988).
[CrossRef]

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Electron. Lett. 24, 474 (1988).
[CrossRef]

IEEE J. Lightwave Technol. (2)

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, IEEE J. Lightwave Technol. LT-3, 1062 (1985).
[CrossRef]

S. C. Rashleigh, IEEE J. Lightwave Technol. LT-1, 312 (1983).
[CrossRef]

J. Nondestr. Eval. (1)

R. O. Claus, J. C. Wade, J. Nondestr. Eval. 4, 23 (1984).
[CrossRef]

Opt. Lett. (1)

Phys. Rep. (1)

A. J. Rogers, Phys. Rep. 169, 99 (1988).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

H. C. Lefevre, Proc. Soc. Photo-Opt. Instrum. Eng. 838, 86 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. The squeezers (the pairs of dark circles) couple the principal propagating mode to the orthogonal mode, The short-coherence-length source allows us to multiplex different sensing segments of the fiber. λ/2, half-wave plate; λ/4, quarter-wave plate; PZT, piezoelectric transducer; PD, photodiode; A, analyzer.

Fig. 2
Fig. 2

Experimental results, (a) When point 3 is interrogated, only frequency f3 is present, (b) On interrogation of points 2 and 1, the other frequencies become apparent.

Fig. 3
Fig. 3

Detail of the point 3 interrogation. The peaks at frequencies f1 and f2 remain below 30 dB rms.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ l = L b L c / λ .
Δ x = i L c / I ,
Δ θ i = l i d θ ( P ) d l d l ,
l i d θ ( P ) d l d l = l i + 1 d θ ( P ) d l d l + Δ l i d θ ( P ) d l d l ,

Metrics