Abstract

We propose and experimentally demonstrate a simple technique capable of significantly enhancing the signal-to-noise ratio of photorefractive amplifiers. The optical noise due to amplified scattered light and multiple interface reflections is removed by performing two-wave mixing in off-axis-rotating BaTiO3 and Bi12SiO20 crystals. A 20-fold improvement of the signal-to-noise ratio is achieved, and virtually noise-free image amplifiers are demonstrated.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. J. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
    [Crossref]
  2. S. G. Odoulov, M. S. Soskin, in Photorefractive Materials and Their Applications II, Survey of Applications, P. Gunter, J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989), pp. 27–33, and references therein.
  3. J. Feinberg, J. Opt. Soc. Am. 72, 46 (1982).
    [Crossref]
  4. Amplified scattered noise can also be exploited to realize temporal high-pass filters as reported in M. Cronin-Golomb, A. M. Biernacki, C. Lin, H. Kong, Opt. Lett. 12, 1029 (1987), and J. E. Ford, Y. Fainman, S. H. Lee, Opt. Lett. 13, 856 (1988).
    [Crossref] [PubMed]
  5. J. P. Huignard, A. Marrakchi, Opt. Commun. 38, 249 (1981).
    [Crossref]
  6. G. C. Valley, M. B. Klein, Opt. Eng. 22, 704 (1983).
  7. Y. Fainman, E. Klancnik, S. H. Lee, Opt. Eng. 25, 228 (1986).
  8. Ph. Refregier, L. Solymar, H. Rajbenbach, J. P. Huignard, J. Appl. Phys. 58, 45 (1985).
    [Crossref]
  9. K. I. Zemskov, M. A. Kazaryan, S. F. Lyuksyutov, S. G. Odulov, N. G. Orlova, G. G. Petrash, M. S. Soskin, JETP Lett. 48, 202 (1988).
  10. G. Hamel de Montchenault, J. P. Huignard, J. Appl. Phys. 63, 624 (1988).
    [Crossref]

1988 (2)

K. I. Zemskov, M. A. Kazaryan, S. F. Lyuksyutov, S. G. Odulov, N. G. Orlova, G. G. Petrash, M. S. Soskin, JETP Lett. 48, 202 (1988).

G. Hamel de Montchenault, J. P. Huignard, J. Appl. Phys. 63, 624 (1988).
[Crossref]

1987 (1)

1986 (1)

Y. Fainman, E. Klancnik, S. H. Lee, Opt. Eng. 25, 228 (1986).

1985 (1)

Ph. Refregier, L. Solymar, H. Rajbenbach, J. P. Huignard, J. Appl. Phys. 58, 45 (1985).
[Crossref]

1983 (1)

G. C. Valley, M. B. Klein, Opt. Eng. 22, 704 (1983).

1982 (1)

1981 (1)

J. P. Huignard, A. Marrakchi, Opt. Commun. 38, 249 (1981).
[Crossref]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. J. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[Crossref]

Biernacki, A. M.

Cronin-Golomb, M.

Fainman, Y.

Y. Fainman, E. Klancnik, S. H. Lee, Opt. Eng. 25, 228 (1986).

Feinberg, J.

Hamel de Montchenault, G.

G. Hamel de Montchenault, J. P. Huignard, J. Appl. Phys. 63, 624 (1988).
[Crossref]

Huignard, J. P.

G. Hamel de Montchenault, J. P. Huignard, J. Appl. Phys. 63, 624 (1988).
[Crossref]

Ph. Refregier, L. Solymar, H. Rajbenbach, J. P. Huignard, J. Appl. Phys. 58, 45 (1985).
[Crossref]

J. P. Huignard, A. Marrakchi, Opt. Commun. 38, 249 (1981).
[Crossref]

Kazaryan, M. A.

K. I. Zemskov, M. A. Kazaryan, S. F. Lyuksyutov, S. G. Odulov, N. G. Orlova, G. G. Petrash, M. S. Soskin, JETP Lett. 48, 202 (1988).

Klancnik, E.

Y. Fainman, E. Klancnik, S. H. Lee, Opt. Eng. 25, 228 (1986).

Klein, M. B.

G. C. Valley, M. B. Klein, Opt. Eng. 22, 704 (1983).

Kong, H.

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. J. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[Crossref]

Lee, S. H.

Y. Fainman, E. Klancnik, S. H. Lee, Opt. Eng. 25, 228 (1986).

Lin, C.

Lyuksyutov, S. F.

K. I. Zemskov, M. A. Kazaryan, S. F. Lyuksyutov, S. G. Odulov, N. G. Orlova, G. G. Petrash, M. S. Soskin, JETP Lett. 48, 202 (1988).

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. J. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[Crossref]

Marrakchi, A.

J. P. Huignard, A. Marrakchi, Opt. Commun. 38, 249 (1981).
[Crossref]

Odoulov, S. G.

S. G. Odoulov, M. S. Soskin, in Photorefractive Materials and Their Applications II, Survey of Applications, P. Gunter, J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989), pp. 27–33, and references therein.

Odulov, S. G.

K. I. Zemskov, M. A. Kazaryan, S. F. Lyuksyutov, S. G. Odulov, N. G. Orlova, G. G. Petrash, M. S. Soskin, JETP Lett. 48, 202 (1988).

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. J. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[Crossref]

Orlova, N. G.

K. I. Zemskov, M. A. Kazaryan, S. F. Lyuksyutov, S. G. Odulov, N. G. Orlova, G. G. Petrash, M. S. Soskin, JETP Lett. 48, 202 (1988).

Petrash, G. G.

K. I. Zemskov, M. A. Kazaryan, S. F. Lyuksyutov, S. G. Odulov, N. G. Orlova, G. G. Petrash, M. S. Soskin, JETP Lett. 48, 202 (1988).

Rajbenbach, H.

Ph. Refregier, L. Solymar, H. Rajbenbach, J. P. Huignard, J. Appl. Phys. 58, 45 (1985).
[Crossref]

Refregier, Ph.

Ph. Refregier, L. Solymar, H. Rajbenbach, J. P. Huignard, J. Appl. Phys. 58, 45 (1985).
[Crossref]

Solymar, L.

Ph. Refregier, L. Solymar, H. Rajbenbach, J. P. Huignard, J. Appl. Phys. 58, 45 (1985).
[Crossref]

Soskin, M. J.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. J. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[Crossref]

Soskin, M. S.

K. I. Zemskov, M. A. Kazaryan, S. F. Lyuksyutov, S. G. Odulov, N. G. Orlova, G. G. Petrash, M. S. Soskin, JETP Lett. 48, 202 (1988).

S. G. Odoulov, M. S. Soskin, in Photorefractive Materials and Their Applications II, Survey of Applications, P. Gunter, J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989), pp. 27–33, and references therein.

Valley, G. C.

G. C. Valley, M. B. Klein, Opt. Eng. 22, 704 (1983).

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. J. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[Crossref]

Zemskov, K. I.

K. I. Zemskov, M. A. Kazaryan, S. F. Lyuksyutov, S. G. Odulov, N. G. Orlova, G. G. Petrash, M. S. Soskin, JETP Lett. 48, 202 (1988).

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. J. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[Crossref]

J. Appl. Phys. (2)

Ph. Refregier, L. Solymar, H. Rajbenbach, J. P. Huignard, J. Appl. Phys. 58, 45 (1985).
[Crossref]

G. Hamel de Montchenault, J. P. Huignard, J. Appl. Phys. 63, 624 (1988).
[Crossref]

J. Opt. Soc. Am. (1)

JETP Lett. (1)

K. I. Zemskov, M. A. Kazaryan, S. F. Lyuksyutov, S. G. Odulov, N. G. Orlova, G. G. Petrash, M. S. Soskin, JETP Lett. 48, 202 (1988).

Opt. Commun. (1)

J. P. Huignard, A. Marrakchi, Opt. Commun. 38, 249 (1981).
[Crossref]

Opt. Eng. (2)

G. C. Valley, M. B. Klein, Opt. Eng. 22, 704 (1983).

Y. Fainman, E. Klancnik, S. H. Lee, Opt. Eng. 25, 228 (1986).

Opt. Lett. (1)

Other (1)

S. G. Odoulov, M. S. Soskin, in Photorefractive Materials and Their Applications II, Survey of Applications, P. Gunter, J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989), pp. 27–33, and references therein.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the effect of a crystal angular rotation (Ω) on (a) a noise grating, where θ + Ωt is the time-varying angle between the fixed pump beam and an internally generated noise beam originating from point A, and (b) the injected signal grating for which the rotation of the crystal yields a tilt of the illumination fringes. (The figures are not to scale.)

Fig. 2
Fig. 2

Top: The noise distribution in the output plane of photorefractive amplifiers (λ0 = 514 nm, I0 = 5 mW/cm2, Ω = 0). The bright spots are the impact of the transmitted pump beams. Bottom: The time evolution of the noise and amplified signal emerging from photorefractive amplifiers when the pump beam is switched on. Λ = 2.5 μm and E0 = 0 for BaTiO3, and Λ = 20 μm and E0 = 8 kV · cm−1 for BSO.

Fig. 3
Fig. 3

Noise power and two-wave mixing gain in BaTiO3 versus the angular velocity of the crystal. The inset shows the dependence of the signal-to-noise ratio (SNR) on the angular velocity of the crystal.

Fig. 4
Fig. 4

High-gain, low-noise image amplification in two-wave mixing experiments with rotating crystals. Left: Low-intensity incident images. Middle: Amplified images (×103 for BaTiO3, ×50 for BSO) at Ω = 0; the quality of the images is corrupted by amplified scattered noise. Multiple amplified parasite images due to reflections on the crystal interfaces are also present for BaTiO3. Right: Noise-free amplified images (×500 for BaTiO3, ×20 for BSO).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ω Ω N , with Ω N = λ ( 2 π τ N x ) 1 .
Ω Ω S , with Ω S = Λ ( π τ S l ) 1 .

Metrics