Abstract

Ultrafast all-optical soliton-trapping logic gates, including an inverter, exclusive OR, and AND, are experimentally demonstrated in birefringent fibers. The soliton-trapping logic gates are three terminal devices with orthogonally polarized inputs, phase-insensitive nonlinear operation, and switching energies of ~42 pJ. Using a 0.2-THz bandpass filter, the contrast ratio for the exclusive-OR gate is ~8:1, but the output pulses are ~10 times broader than the input pulse width. By widening the filter bandpass to 0.58 THz, an inverter is demonstrated with an ~4:1 contrast ratio and output pulses that can propagate as solitons in a fiber. Numerical simulations show that the output from the inverter can be cascaded to other trapping gates.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Islam, C. D. Poole, J. P. Gordon, Opt. Lett. 14, 1011 (1989).
    [CrossRef] [PubMed]
  2. C. R. Menyuk, Opt. Lett. 12, 614 (1987).
    [CrossRef] [PubMed]
  3. M. N. Islam, E. R. Sunderman, I. Bar-Joseph, N. Sauer, T. Y. Chang, Appl. Phys. Lett. 54, 1203 (1989).
    [CrossRef]
  4. A. Lattes, H. A. Haus, F. J. Leonberger, E. P. Ippen, IEEE J. Quantum Electron. QE-19, 1718 (1983).
    [CrossRef]
  5. J. Satsuma, N. Yajima, Prog. Theor. Phys. Suppl. 55, 284 (1974).
    [CrossRef]
  6. L. F. Mollenauer, R. H. Stolen, M. N. Islam, Opt. Lett. 10, 229 (1985).
    [CrossRef] [PubMed]
  7. L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
    [CrossRef]

1989 (2)

M. N. Islam, E. R. Sunderman, I. Bar-Joseph, N. Sauer, T. Y. Chang, Appl. Phys. Lett. 54, 1203 (1989).
[CrossRef]

M. N. Islam, C. D. Poole, J. P. Gordon, Opt. Lett. 14, 1011 (1989).
[CrossRef] [PubMed]

1987 (1)

1986 (1)

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

1985 (1)

1983 (1)

A. Lattes, H. A. Haus, F. J. Leonberger, E. P. Ippen, IEEE J. Quantum Electron. QE-19, 1718 (1983).
[CrossRef]

1974 (1)

J. Satsuma, N. Yajima, Prog. Theor. Phys. Suppl. 55, 284 (1974).
[CrossRef]

Bar-Joseph, I.

M. N. Islam, E. R. Sunderman, I. Bar-Joseph, N. Sauer, T. Y. Chang, Appl. Phys. Lett. 54, 1203 (1989).
[CrossRef]

Chang, T. Y.

M. N. Islam, E. R. Sunderman, I. Bar-Joseph, N. Sauer, T. Y. Chang, Appl. Phys. Lett. 54, 1203 (1989).
[CrossRef]

Gordon, J. P.

M. N. Islam, C. D. Poole, J. P. Gordon, Opt. Lett. 14, 1011 (1989).
[CrossRef] [PubMed]

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

Haus, H. A.

A. Lattes, H. A. Haus, F. J. Leonberger, E. P. Ippen, IEEE J. Quantum Electron. QE-19, 1718 (1983).
[CrossRef]

Ippen, E. P.

A. Lattes, H. A. Haus, F. J. Leonberger, E. P. Ippen, IEEE J. Quantum Electron. QE-19, 1718 (1983).
[CrossRef]

Islam, M. N.

M. N. Islam, E. R. Sunderman, I. Bar-Joseph, N. Sauer, T. Y. Chang, Appl. Phys. Lett. 54, 1203 (1989).
[CrossRef]

M. N. Islam, C. D. Poole, J. P. Gordon, Opt. Lett. 14, 1011 (1989).
[CrossRef] [PubMed]

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, M. N. Islam, Opt. Lett. 10, 229 (1985).
[CrossRef] [PubMed]

Lattes, A.

A. Lattes, H. A. Haus, F. J. Leonberger, E. P. Ippen, IEEE J. Quantum Electron. QE-19, 1718 (1983).
[CrossRef]

Leonberger, F. J.

A. Lattes, H. A. Haus, F. J. Leonberger, E. P. Ippen, IEEE J. Quantum Electron. QE-19, 1718 (1983).
[CrossRef]

Menyuk, C. R.

Mollenauer, L. F.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, M. N. Islam, Opt. Lett. 10, 229 (1985).
[CrossRef] [PubMed]

Poole, C. D.

Satsuma, J.

J. Satsuma, N. Yajima, Prog. Theor. Phys. Suppl. 55, 284 (1974).
[CrossRef]

Sauer, N.

M. N. Islam, E. R. Sunderman, I. Bar-Joseph, N. Sauer, T. Y. Chang, Appl. Phys. Lett. 54, 1203 (1989).
[CrossRef]

Stolen, R. H.

Sunderman, E. R.

M. N. Islam, E. R. Sunderman, I. Bar-Joseph, N. Sauer, T. Y. Chang, Appl. Phys. Lett. 54, 1203 (1989).
[CrossRef]

Yajima, N.

J. Satsuma, N. Yajima, Prog. Theor. Phys. Suppl. 55, 284 (1974).
[CrossRef]

Appl. Phys. Lett. (1)

M. N. Islam, E. R. Sunderman, I. Bar-Joseph, N. Sauer, T. Y. Chang, Appl. Phys. Lett. 54, 1203 (1989).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. Lattes, H. A. Haus, F. J. Leonberger, E. P. Ippen, IEEE J. Quantum Electron. QE-19, 1718 (1983).
[CrossRef]

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

Opt. Lett. (3)

Prog. Theor. Phys. Suppl. (1)

J. Satsuma, N. Yajima, Prog. Theor. Phys. Suppl. 55, 284 (1974).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental apparatus for the soliton-trapping logic gates. A and B are the orthogonally polarized inputs.

Fig. 2
Fig. 2

(a) Spectra direct from the fiber output, (b) Spectra after a Fabry–Perot bandpass filter with 85% reflecting mirrors. This corresponds to an exclusive-OR gate with an ~8:1 contrast ratio.

Fig. 3
Fig. 3

Output spectra and autocorrelations from an inverter (NOT A) with 70% reflecting mirrors in the Fabry–Perot filter and a polarizer along the B axis, (a) A blocked and (b) A unblocked. Both spectra and both autocorrelations are plotted on the same scale.

Fig. 4
Fig. 4

Numerical simulations testing the cascadability of an inverter (NOT A). Plotted are the intensities along the B axis (τc = 300 fsec/1.76). (a) The solid curves are the output after an L = 5.8Z0 (20-m) soliton-trapping fiber, and the dotted curves are after a broad bandpass (~0.58-THz) frequency filter. The insets show the corresponding spectra before and after the frequency filter, (b) The intensities after propagating the filter output in a 10Z0 length of fiber. (c) The intensities after Raman amplification of the pulses from (b) in another 10Z0 length of fiber.

Metrics