Abstract

A new discrete-channel tunable Lyot filter that uses ferroelectric liquid-crystal (FLC) smectic C* wave plates is described and demonstrated. The device is tuned by changing the retardation of each birefringent element. This is achieved by electrically rotating the FLC wave plates in each stage by 45°, which effectively changes the design wavelength of the Lyot filter. The transmission characteristics of such a device are demonstrated in a three-stage filter and show good agreement with theory. Advantages of the FLC tunable filter over existing filter structures include low switching voltages (±10 V), rapid tunability (~100 kHz), potentially high transmission and wide field of view, and large entrance aperture.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lyot, C. R. Acad. Sci. 197, 1593 (1933).
  2. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap 5.
  3. A. M. Title, W. J. Rosenberg, Opt. Eng. 20, 815 (1981).
  4. I. Solc, J. Opt. Soc. Am. 55, 621 (1965).
    [CrossRef]
  5. B. H. Billings, J. Opt. Soc. Am. 37, 738 (1947).
    [CrossRef] [PubMed]
  6. J. W. Evans, J. Opt. Soc. Am. 39, 229 (1949).
    [CrossRef]
  7. R. S. Weis, T. K. Gaylord, J. Opt. Soc. Am. A 4, 1720 (1987).
    [CrossRef]
  8. I. C. Chang, Opt. Eng. 20, 824 (1981).
  9. J. F. Lotspeich, R. R. Stephens, D. M. Henderson, Opt. Eng. 20, 830 (1981).
  10. W. Gunning, Appl. Opt. 21, 3129 (1982).
    [CrossRef] [PubMed]
  11. W. I. Kay, U.S. patent4,394,069 (June5, 1979).
  12. H. A. Tarry, Electron. Lett. 18, 47 (1975).
  13. W. Gunning, Proc. Soc. Photo-Opt. Instrum. Eng. 268, 190 (1980).
  14. S. Wu, Appl. Opt. 28, 48 (1989).
    [CrossRef] [PubMed]
  15. N. A. Clark, M. A. Handschy, S. T. Lagerwall, Mol. Cryst. Liq. Cryst. 94, 213 (1983).
    [CrossRef]
  16. N. A. Clark, S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
    [CrossRef]
  17. ZLI-4003 mixture available from Merck (Frankfurter-strasse 250, D-6100 Darmstadt 1, Federal Republic of Germany).
  18. R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941).
    [CrossRef]
  19. S. Wu, Phys. Rev. A 33, 1270 (1986).
    [CrossRef] [PubMed]

1989 (1)

1987 (1)

1986 (1)

S. Wu, Phys. Rev. A 33, 1270 (1986).
[CrossRef] [PubMed]

1983 (1)

N. A. Clark, M. A. Handschy, S. T. Lagerwall, Mol. Cryst. Liq. Cryst. 94, 213 (1983).
[CrossRef]

1982 (1)

1981 (3)

A. M. Title, W. J. Rosenberg, Opt. Eng. 20, 815 (1981).

I. C. Chang, Opt. Eng. 20, 824 (1981).

J. F. Lotspeich, R. R. Stephens, D. M. Henderson, Opt. Eng. 20, 830 (1981).

1980 (2)

N. A. Clark, S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
[CrossRef]

W. Gunning, Proc. Soc. Photo-Opt. Instrum. Eng. 268, 190 (1980).

1975 (1)

H. A. Tarry, Electron. Lett. 18, 47 (1975).

1965 (1)

1949 (1)

1947 (1)

1941 (1)

1933 (1)

B. Lyot, C. R. Acad. Sci. 197, 1593 (1933).

Billings, B. H.

Chang, I. C.

I. C. Chang, Opt. Eng. 20, 824 (1981).

Clark, N. A.

N. A. Clark, M. A. Handschy, S. T. Lagerwall, Mol. Cryst. Liq. Cryst. 94, 213 (1983).
[CrossRef]

N. A. Clark, S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
[CrossRef]

Evans, J. W.

Gaylord, T. K.

Gunning, W.

W. Gunning, Appl. Opt. 21, 3129 (1982).
[CrossRef] [PubMed]

W. Gunning, Proc. Soc. Photo-Opt. Instrum. Eng. 268, 190 (1980).

Handschy, M. A.

N. A. Clark, M. A. Handschy, S. T. Lagerwall, Mol. Cryst. Liq. Cryst. 94, 213 (1983).
[CrossRef]

Henderson, D. M.

J. F. Lotspeich, R. R. Stephens, D. M. Henderson, Opt. Eng. 20, 830 (1981).

Jones, R. C.

Kay, W. I.

W. I. Kay, U.S. patent4,394,069 (June5, 1979).

Lagerwall, S. T.

N. A. Clark, M. A. Handschy, S. T. Lagerwall, Mol. Cryst. Liq. Cryst. 94, 213 (1983).
[CrossRef]

N. A. Clark, S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
[CrossRef]

Lotspeich, J. F.

J. F. Lotspeich, R. R. Stephens, D. M. Henderson, Opt. Eng. 20, 830 (1981).

Lyot, B.

B. Lyot, C. R. Acad. Sci. 197, 1593 (1933).

Rosenberg, W. J.

A. M. Title, W. J. Rosenberg, Opt. Eng. 20, 815 (1981).

Solc, I.

Stephens, R. R.

J. F. Lotspeich, R. R. Stephens, D. M. Henderson, Opt. Eng. 20, 830 (1981).

Tarry, H. A.

H. A. Tarry, Electron. Lett. 18, 47 (1975).

Title, A. M.

A. M. Title, W. J. Rosenberg, Opt. Eng. 20, 815 (1981).

Weis, R. S.

Wu, S.

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap 5.

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap 5.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

N. A. Clark, S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
[CrossRef]

C. R. Acad. Sci. (1)

B. Lyot, C. R. Acad. Sci. 197, 1593 (1933).

Electron. Lett. (1)

H. A. Tarry, Electron. Lett. 18, 47 (1975).

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (1)

Mol. Cryst. Liq. Cryst. (1)

N. A. Clark, M. A. Handschy, S. T. Lagerwall, Mol. Cryst. Liq. Cryst. 94, 213 (1983).
[CrossRef]

Opt. Eng. (3)

I. C. Chang, Opt. Eng. 20, 824 (1981).

J. F. Lotspeich, R. R. Stephens, D. M. Henderson, Opt. Eng. 20, 830 (1981).

A. M. Title, W. J. Rosenberg, Opt. Eng. 20, 815 (1981).

Phys. Rev. A (1)

S. Wu, Phys. Rev. A 33, 1270 (1986).
[CrossRef] [PubMed]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

W. Gunning, Proc. Soc. Photo-Opt. Instrum. Eng. 268, 190 (1980).

Other (3)

ZLI-4003 mixture available from Merck (Frankfurter-strasse 250, D-6100 Darmstadt 1, Federal Republic of Germany).

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap 5.

W. I. Kay, U.S. patent4,394,069 (June5, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Single-stage of the FLC tunable Lyot filter. The net retardation of the stage can be modulated by electronically rotating the crystal axes [α(V)] of the FLC wave plate.

Fig. 2
Fig. 2

Proof-of-principle three-stage Lyot filter. This device requires four polarizers (P1–P4), seven FLC wave plates (LC1–LC7), and three birefringent elements (B1–B3), which are one-wave, two-wave, and four-wave retarders at the design wavelength.

Fig. 3
Fig. 3

Measured transmission spectra of the three-stage Lyot filter in (a) the unswitched state and (b) the switched state shown with simulation results (solid curves).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Γ ( λ ) = 2 π Δ n d λ ,
T n ( λ ) = cos 2 [ Γ n ( λ ) / 2 ] .
E n ( λ ) = P y W n ( λ ) P y E n ( λ ) ,
P y = [ 0 0 0 1 ] , W n ( λ ) = [ cos [ Γ n ( λ ) / 2 ] i sin [ Γ n ( λ ) / 2 ] i sin [ Γ n ( λ ) / 2 ] cos [ Γ n ( λ ) / 2 ] ] ,
Γ n ( λ ) = Γ n F ( λ ) + Γ n C ( λ ) .
Γ n F ( λ ) = 2 n π λ A λ ,
Γ n C ( λ ) = { 0 unswitched 2 n π Δ λ λ Δ n ( λ ) Δ n ( λ B ) switched ,
Γ n ( λ ) = { 2 n π λ A λ unswitched 2 n π λ [ λ A + Δ λ Δ n ( λ ) Δ n ( λ B ) ] switched .
Δ n ( T , λ ) = G ( T ) λ 2 ( λ * ) 2 λ 2 ( λ * ) 2 ,

Metrics