Abstract

An investigation of oblique plane-wave electromagnetic scattering from active dielectric films reveals the existence of anomalously large resonances that occur at discrete plane-wave angles of incidence. These resonances may be understood from a leaky-wave phase-matching condition whose predictions for the first few modes agree to within a few percent of those obtained from a rigorous treatment using Maxwell’s equations. Enhancement in the scattered-field intensities of the order of 100 was observed in experiments using finite-diameter pump and probe laser beams and active films as thin as 6 μm.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. G. Alexopoulos, N. K. Uzonoglu, Appl. Opt. 17, 235 (1978).
    [CrossRef] [PubMed]
  2. M. Kerker, Appl. Opt. 17, 3337 (1978).
    [CrossRef] [PubMed]
  3. M. Kerker, Appl. Opt. 18, 1180 (1979).
    [CrossRef] [PubMed]
  4. A. Cohen, J. Appl. Phys. 58, 2437 (1985).
    [CrossRef]
  5. J. Warniak, Ph.D. dissertation (Department of Electrical Engineerng, University of California, Los Angeles, Los Angeles, Calif., 1983).
  6. N. Pariasamy, F. P. Schafer, Appl. Opt. 24, 201 (1981).
  7. A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, IEEE J. Lightwave Technol. LT-5, 660 (1987).
    [CrossRef]
  8. S. N. Mendenhall, O. M. Stafsudd, N. G. Alexopoulos, J. Appl. Phys. (to be published).

1987 (1)

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, IEEE J. Lightwave Technol. LT-5, 660 (1987).
[CrossRef]

1985 (1)

A. Cohen, J. Appl. Phys. 58, 2437 (1985).
[CrossRef]

1981 (1)

1979 (1)

1978 (2)

Alexopoulos, N. G.

N. G. Alexopoulos, N. K. Uzonoglu, Appl. Opt. 17, 235 (1978).
[CrossRef] [PubMed]

S. N. Mendenhall, O. M. Stafsudd, N. G. Alexopoulos, J. Appl. Phys. (to be published).

Cohen, A.

A. Cohen, J. Appl. Phys. 58, 2437 (1985).
[CrossRef]

Ghatak, A. K.

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, IEEE J. Lightwave Technol. LT-5, 660 (1987).
[CrossRef]

Kerker, M.

Mendenhall, S. N.

S. N. Mendenhall, O. M. Stafsudd, N. G. Alexopoulos, J. Appl. Phys. (to be published).

Pariasamy, N.

Schafer, F. P.

Shenoy, M. R.

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, IEEE J. Lightwave Technol. LT-5, 660 (1987).
[CrossRef]

Stafsudd, O. M.

S. N. Mendenhall, O. M. Stafsudd, N. G. Alexopoulos, J. Appl. Phys. (to be published).

Thyagarajan, K.

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, IEEE J. Lightwave Technol. LT-5, 660 (1987).
[CrossRef]

Uzonoglu, N. K.

Warniak, J.

J. Warniak, Ph.D. dissertation (Department of Electrical Engineerng, University of California, Los Angeles, Los Angeles, Calif., 1983).

Appl. Opt. (4)

IEEE J. Lightwave Technol. (1)

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, IEEE J. Lightwave Technol. LT-5, 660 (1987).
[CrossRef]

J. Appl. Phys. (1)

A. Cohen, J. Appl. Phys. 58, 2437 (1985).
[CrossRef]

Other (2)

J. Warniak, Ph.D. dissertation (Department of Electrical Engineerng, University of California, Los Angeles, Los Angeles, Calif., 1983).

S. N. Mendenhall, O. M. Stafsudd, N. G. Alexopoulos, J. Appl. Phys. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Plane-wave scattering geometry. k1, k2, and k3 are the plane-wave propagation constants of the three layers.

Fig. 2
Fig. 2

Leaky waveguide mode on a symmetric dielectric waveguiding structure.

Fig. 3
Fig. 3

Electric-field magnitude for the first TE mode at a fixed point in space as a function of the scattering angle α for a symmetric dielectric waveguiding structure. n2 = 1.33 870 − j0.97785 × 10−4, producing resonant scattering at α = 28 deg. The magnitude of the incident electric field is 1 V/m. n1 = 1.515, d = 6.0 μm.

Fig. 4
Fig. 4

Intensity gain coefficient required to produce resonant TM (TE) scattering in the first mode as a function of active film thickness for a symmetric dielectric waveguiding structure. n1 = 1.515, n2r = 1.330.

Fig. 5
Fig. 5

Experimental geometry for finite-diameter laser beam tests of resonant scattering in active dielectric films.

Fig. 6
Fig. 6

Measured TM probe beam transmission as a function of the prism rotation angle Ψ for a 12-μm-thick dielectric film. The upper curve shows the transmission with the pump beam present (active scattering), and the lower curve shows the transmission with the pump beam absent (passive scattering).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1 R 21 exp ( g s d / cos θ 2 s ) = 0 ,
cos θ 2 s = λ 0 s / 2 n 2 r d , s = 1 , 2 , 3 , ... ,
α s = arccos ( n 2 r sin θ 2 s n 1 ) .

Metrics