Abstract

The cross talk induced by soliton collision with a Raman effect in a lossless fiber is discussed. There are frequency-shift enhancements for the two colliding solitons in addition to the energy transfer. The maximum rate–distance product limited by energy depletion is obtained for the soliton-based wavelength-division-multiplexing system.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
    [CrossRef]
  2. Y. Kodama, A. Hasegawa, IEEE J. Quantum Electron. QE-23, 510 (1987).
    [CrossRef]
  3. L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
    [CrossRef]
  4. S. Chi, S. Wen, Opt. Commun. 69, 334 (1989).
    [CrossRef]
  5. J P. Gordon, Opt. Lett. 11, 662 (1986).
    [CrossRef] [PubMed]
  6. F. M. Mitschke, L. F. Mollenauer, Opt. Lett. 11, 659 (1986).
    [CrossRef] [PubMed]
  7. Y. Kodama, K. Nozaki, Opt. Lett. 12, 1038 (1987).
    [CrossRef] [PubMed]
  8. D. Yevick, B. Hermansson, Opt. Commun. 47, 101 (1982).
    [CrossRef]

1989 (1)

S. Chi, S. Wen, Opt. Commun. 69, 334 (1989).
[CrossRef]

1987 (2)

Y. Kodama, A. Hasegawa, IEEE J. Quantum Electron. QE-23, 510 (1987).
[CrossRef]

Y. Kodama, K. Nozaki, Opt. Lett. 12, 1038 (1987).
[CrossRef] [PubMed]

1986 (3)

1982 (1)

D. Yevick, B. Hermansson, Opt. Commun. 47, 101 (1982).
[CrossRef]

1981 (1)

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

Chi, S.

S. Chi, S. Wen, Opt. Commun. 69, 334 (1989).
[CrossRef]

Gordon, J P.

Gordon, J. P.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

Hasegawa, A.

Y. Kodama, A. Hasegawa, IEEE J. Quantum Electron. QE-23, 510 (1987).
[CrossRef]

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

Hermansson, B.

D. Yevick, B. Hermansson, Opt. Commun. 47, 101 (1982).
[CrossRef]

Islam, M. N.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

Kodama, Y.

Y. Kodama, K. Nozaki, Opt. Lett. 12, 1038 (1987).
[CrossRef] [PubMed]

Y. Kodama, A. Hasegawa, IEEE J. Quantum Electron. QE-23, 510 (1987).
[CrossRef]

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

Mitschke, F. M.

Mollenauer, L. F.

F. M. Mitschke, L. F. Mollenauer, Opt. Lett. 11, 659 (1986).
[CrossRef] [PubMed]

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

Nozaki, K.

Wen, S.

S. Chi, S. Wen, Opt. Commun. 69, 334 (1989).
[CrossRef]

Yevick, D.

D. Yevick, B. Hermansson, Opt. Commun. 47, 101 (1982).
[CrossRef]

IEEE J. Quantum Electron. (2)

Y. Kodama, A. Hasegawa, IEEE J. Quantum Electron. QE-23, 510 (1987).
[CrossRef]

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

Opt. Commun. (2)

S. Chi, S. Wen, Opt. Commun. 69, 334 (1989).
[CrossRef]

D. Yevick, B. Hermansson, Opt. Commun. 47, 101 (1982).
[CrossRef]

Opt. Lett. (3)

Proc. IEEE (1)

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Envelope evolution of the collision of the two soli-tons with different carrier frequencies. The half-frequency separation is Ωh = 4, the time scale is T = 1 psec, Esi and Epi are the energies of the Stokes and pump solitons, respectively, at ξ = 0, and Esf and Epf are the energies at ξ = 5.

Fig. 2
Fig. 2

Energy-transfer ratio rE with respect to the half-frequency separation Ωh for the time scales T = 1, 5, and 10 psec.

Fig. 3
Fig. 3

Frequency-shift enhancements, ΔΩes and ΔΩep, with respect to the half-frequency separation Ωh for the time scales T = 1, 5, and 10 psec. The solid curves represent ΔΩes, and the dashed curves represent ΔΩep.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

i q ξ + 1 2 2 q τ 2 + | q | 2 q c R | q | 2 τ q = 0 .
r = 1 T ( t k 0 z ) , ξ = | k 0 | T 2 z , q = T ( ω 0 n 2 2 | k 0 | c ) 1 / 2 ϕ ,
c R = 1 2 ( 2 π ) 2 r g T ,
q = sech ( τ + Ω ξ ) exp [ i ( Ω τ + φ ) ] ,
q ( τ , ξ = 0 ) = sech ( τ + 10 ) exp ( i Ω s τ ) + sech ( τ 10 ) exp ( Ω p τ + i θ ) ,
r E = 4 c R .
R L < ( 3 . 35 × 10 4 ) T w r c r g Δ λ D ( GHz km ) .

Metrics