Abstract

We have recorded running holograms in a photorefractive crystal with an applied electric field, using a 90° phase-shift fringe-locked interference pattern of light. This method provides a simple way to obtain optimal conditions for nonstationary holographic recording. The experiment that we describe allows us to calculate the crystal diffusion length LD and provides direct evidence of the occurrence of running holograms in photorefractive crystals. Experimental results for a Bi12SiO20 sample are reported.

© 1989 Optical Society of America

Full Article  |  PDF Article

Corrections

Jaime Frejlich, Paulo Magno Garcia, and Lucila Cescato, "Adaptive fringe-locked running hologram in photorefractive crystals: errata," Opt. Lett. 15, 1247-1247 (1990)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-15-21-1247

References

  • View by:
  • |
  • |
  • |

  1. J. P. Huignard, A. Marrakchi, Opt. Commun. 38, 249 (1981).
    [CrossRef]
  2. S. I. S. Stepanov, V. V. Kulikov, M. P. Petrov, Opt. Commun. 44, 19 (1982).
    [CrossRef]
  3. H. R. Rajbenbach, J. P. Huignard, B. Loiseaux, Opt. Commun. 48, 247 (1983).
    [CrossRef]
  4. J. P. Huignard, A. Marrakchi, Opt. Lett. 6, 622 (1981).
    [CrossRef] [PubMed]
  5. P. A. M. dos Santos, L. Cescato, J. Frejlich, Opt. Lett. 13, 1014 (1988).
    [CrossRef]
  6. J. Frejlich, L. Cescato, G. F. Mendes, Appl. Opt. 27, 1967 (1988).
    [CrossRef] [PubMed]
  7. A. A. Kamshilin, J. Frejlich, L. Cescato, Appl. Opt. 25, 2375 (1986).
    [CrossRef] [PubMed]
  8. S. I. Stepanov, M. P. Petrov, in Photorefractive Materials and Their Applications, Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), Chap. 9.
  9. P. A. M. dos Santos, P. Magno Garcia, J. Frejlich, J. Appl. Phys. 66, 247 (1989).
    [CrossRef]

1989 (1)

P. A. M. dos Santos, P. Magno Garcia, J. Frejlich, J. Appl. Phys. 66, 247 (1989).
[CrossRef]

1988 (2)

1986 (1)

1983 (1)

H. R. Rajbenbach, J. P. Huignard, B. Loiseaux, Opt. Commun. 48, 247 (1983).
[CrossRef]

1982 (1)

S. I. S. Stepanov, V. V. Kulikov, M. P. Petrov, Opt. Commun. 44, 19 (1982).
[CrossRef]

1981 (2)

J. P. Huignard, A. Marrakchi, Opt. Commun. 38, 249 (1981).
[CrossRef]

J. P. Huignard, A. Marrakchi, Opt. Lett. 6, 622 (1981).
[CrossRef] [PubMed]

Cescato, L.

dos Santos, P. A. M.

P. A. M. dos Santos, P. Magno Garcia, J. Frejlich, J. Appl. Phys. 66, 247 (1989).
[CrossRef]

P. A. M. dos Santos, L. Cescato, J. Frejlich, Opt. Lett. 13, 1014 (1988).
[CrossRef]

Frejlich, J.

Huignard, J. P.

H. R. Rajbenbach, J. P. Huignard, B. Loiseaux, Opt. Commun. 48, 247 (1983).
[CrossRef]

J. P. Huignard, A. Marrakchi, Opt. Commun. 38, 249 (1981).
[CrossRef]

J. P. Huignard, A. Marrakchi, Opt. Lett. 6, 622 (1981).
[CrossRef] [PubMed]

Kamshilin, A. A.

Kulikov, V. V.

S. I. S. Stepanov, V. V. Kulikov, M. P. Petrov, Opt. Commun. 44, 19 (1982).
[CrossRef]

Loiseaux, B.

H. R. Rajbenbach, J. P. Huignard, B. Loiseaux, Opt. Commun. 48, 247 (1983).
[CrossRef]

Magno Garcia, P.

P. A. M. dos Santos, P. Magno Garcia, J. Frejlich, J. Appl. Phys. 66, 247 (1989).
[CrossRef]

Marrakchi, A.

J. P. Huignard, A. Marrakchi, Opt. Lett. 6, 622 (1981).
[CrossRef] [PubMed]

J. P. Huignard, A. Marrakchi, Opt. Commun. 38, 249 (1981).
[CrossRef]

Mendes, G. F.

Petrov, M. P.

S. I. S. Stepanov, V. V. Kulikov, M. P. Petrov, Opt. Commun. 44, 19 (1982).
[CrossRef]

S. I. Stepanov, M. P. Petrov, in Photorefractive Materials and Their Applications, Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), Chap. 9.

Rajbenbach, H. R.

H. R. Rajbenbach, J. P. Huignard, B. Loiseaux, Opt. Commun. 48, 247 (1983).
[CrossRef]

Stepanov, S. I.

S. I. Stepanov, M. P. Petrov, in Photorefractive Materials and Their Applications, Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), Chap. 9.

Stepanov, S. I. S.

S. I. S. Stepanov, V. V. Kulikov, M. P. Petrov, Opt. Commun. 44, 19 (1982).
[CrossRef]

Appl. Opt. (2)

J. Appl. Phys. (1)

P. A. M. dos Santos, P. Magno Garcia, J. Frejlich, J. Appl. Phys. 66, 247 (1989).
[CrossRef]

Opt. Commun. (3)

J. P. Huignard, A. Marrakchi, Opt. Commun. 38, 249 (1981).
[CrossRef]

S. I. S. Stepanov, V. V. Kulikov, M. P. Petrov, Opt. Commun. 44, 19 (1982).
[CrossRef]

H. R. Rajbenbach, J. P. Huignard, B. Loiseaux, Opt. Commun. 48, 247 (1983).
[CrossRef]

Opt. Lett. (2)

Other (1)

S. I. Stepanov, M. P. Petrov, in Photorefractive Materials and Their Applications, Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Holographic setup: BS, beam splitter; D, detector; Ω, 2Ω, lock-in amplifiers tuned to Ω and 2Ω, respectively.

Fig. 2
Fig. 2

Recordings of VΩ and V2Ω in microvolts, made using a stationary pattern of light in the first portion of the trace and using the adaptive fringe-locked running-hologram method in the second portion of the trace, with E ≃ 8 kV/cm and m ≃ 0.3.

Fig. 3
Fig. 3

Plot of υ0 versus E and the best fit (continuous curve) to Eq. (12) with EM = 1.71 kV/cm (and corresponding LD ≈ 0.31 μm) and υM = 47.9 × 10−3 μm/sec for m ~ 0.3 and K = 4.24 μm−1. The incident irradiances are I1 = 440 μW/cm2 and I2 = 12 μW/cm2. The abscissa shift is E0 = 0.22 kV/cm.

Fig. 4
Fig. 4

Plot of υ0 versus E and the best fit (continuous curve) to Eq. (12) with EM = 1.70 kV/cm (and corresponding LD ≈ 0.31 μm) and υ0 = 52.1 × 10−3 μm/sec for m ~ 1 and K = 4.24 μm−1. The average incident irradiance is (I1 + I2/2 = 325 μW/cm2. The abscissa shift is E0 = 0.38 kV/cm

Tables (1)

Tables Icon

Table 1 Experimental Results

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I R = I 1 + I 2 η 2 I 1 I 2 η F sin ψ ,
I Ω = 2 ψ d I 1 I 2 η F cos ψ
I 2 Ω = 2 ( ψ d / 2 ) 2 I 1 I 2 η F sin ψ ,
V PZT = V 0 + V f , V f = K 0 K 1 V Ω , V Ω = K P I Ω ,
V f = 2 K 0 K 1 K P ψ d I 1 I 2 η F cos ψ .
ψ ( t ) = K PZT 0 V PZT + K υ 0 t ,
ψ ( t ) = K PZT 0 V 0 + K υ 0 t + A cos ψ ( t ) ,
d ψ ( t ) / d t = K υ 0 / [ 1 + A sin ψ ( t ) ] .
| A sin ψ ( t ) | | A sin ψ ( 0 ) | = | A | 1 .
d V PZT ( t ) / d t | t 0 = K υ 0 A sin ψ ( 0 ) / × { [ 1 + A sin ψ ( 0 ) ] K PZT 0 } .
| d V PZT ( t ) / d t | K υ 0 / K PZT 0 for t 0 .
υ 0 = [ 2 υ M E M / ( E M 2 + E 2 ) ] E ,
2 υ M E M = g 0 q / ( K 2 ) for L D 2 l S 2
E M = [ 1 + 1 / ( K 2 L D 2 ) ] E D ,

Metrics