Abstract

Transmission of fused silica, CaF2, LiF, and MgF2 is measured using 450-fsec, 248-nm pulses in the range 10–120 GW/cm2. Different loss mechanisms such as scattering of transmitted radiation, color-center formation, and multiphoton absorption were studied separately. For fused silica a two-photon absorption mechanism is found, while for CaF2, LiF, and MgF2 three-photon absorption and absorption due to color-center formation are found as dominant absorption mechanisms.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Schwarzenbach, T. S. Luk, I. A. McIntyre, U. Johann, A. McPherson, K. Boyer, C. K. Rhodes, Opt. Lett. 11, 499(1986).
    [CrossRef] [PubMed]
  2. J. H. Glownia, J. Misewich, P. P. Sorokin, J. Opt. Soc. Am. B 3, 1573 (1986).
    [CrossRef]
  3. S. Szatmári, F. P. Schäfer, E. Müller-Horsche, W. Mückenheim, Opt. Commun. 63, 305 (1987).
    [CrossRef]
  4. J. P. Roberts, A. J. Taylor, P. H. Y. Lee, R. B. Gibson, Opt. Lett. 13, 734 (1988).
    [CrossRef] [PubMed]
  5. M. Watanabe, A. Endoh, N. Sarukura, S. Watanabe, Appl. Phys. B 48, 417 (1989).
    [CrossRef]
  6. S. Szatmári, F. P. Schäfer, Opt. Commun. 68, 196 (1988).
    [CrossRef]
  7. J. R. M. Barr, N. J. Everall, C. J. Hooker, I. N. Ross, M. J. Shaw, W. T. Toner, Opt. Commun. 66, 127 (1988).
    [CrossRef]
  8. P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, Phys. Rev. B 17, 4620 (1978).
    [CrossRef]
  9. A. J. Taylor, R. B. Gibson, J. P. Roberts, Opt. Lett. 13, 814 (1988).
    [CrossRef] [PubMed]
  10. A. Endoh, Abteilung Laserphysik, Max-Planck-Institut für Biophysikalische Chemie, D-3400 Göttingen, Federal Republic of Germany (personal communication).
  11. N. Morita, T. Yajima, Appl. Phys. B 28, 25 (1982).
    [CrossRef]
  12. D. M. Rayner, P. A. Hackett, C. Willis, Rev. Sci. Instrum. 53, 537 (1982).
    [CrossRef]

1989 (1)

M. Watanabe, A. Endoh, N. Sarukura, S. Watanabe, Appl. Phys. B 48, 417 (1989).
[CrossRef]

1988 (4)

S. Szatmári, F. P. Schäfer, Opt. Commun. 68, 196 (1988).
[CrossRef]

J. R. M. Barr, N. J. Everall, C. J. Hooker, I. N. Ross, M. J. Shaw, W. T. Toner, Opt. Commun. 66, 127 (1988).
[CrossRef]

J. P. Roberts, A. J. Taylor, P. H. Y. Lee, R. B. Gibson, Opt. Lett. 13, 734 (1988).
[CrossRef] [PubMed]

A. J. Taylor, R. B. Gibson, J. P. Roberts, Opt. Lett. 13, 814 (1988).
[CrossRef] [PubMed]

1987 (1)

S. Szatmári, F. P. Schäfer, E. Müller-Horsche, W. Mückenheim, Opt. Commun. 63, 305 (1987).
[CrossRef]

1986 (2)

1982 (2)

N. Morita, T. Yajima, Appl. Phys. B 28, 25 (1982).
[CrossRef]

D. M. Rayner, P. A. Hackett, C. Willis, Rev. Sci. Instrum. 53, 537 (1982).
[CrossRef]

1978 (1)

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Adhav, R. S.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Barr, J. R. M.

J. R. M. Barr, N. J. Everall, C. J. Hooker, I. N. Ross, M. J. Shaw, W. T. Toner, Opt. Commun. 66, 127 (1988).
[CrossRef]

Bechtel, J. H.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Bloembergen, N.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Boyer, K.

Endoh, A.

M. Watanabe, A. Endoh, N. Sarukura, S. Watanabe, Appl. Phys. B 48, 417 (1989).
[CrossRef]

A. Endoh, Abteilung Laserphysik, Max-Planck-Institut für Biophysikalische Chemie, D-3400 Göttingen, Federal Republic of Germany (personal communication).

Everall, N. J.

J. R. M. Barr, N. J. Everall, C. J. Hooker, I. N. Ross, M. J. Shaw, W. T. Toner, Opt. Commun. 66, 127 (1988).
[CrossRef]

Gibson, R. B.

Glownia, J. H.

Hackett, P. A.

D. M. Rayner, P. A. Hackett, C. Willis, Rev. Sci. Instrum. 53, 537 (1982).
[CrossRef]

Hooker, C. J.

J. R. M. Barr, N. J. Everall, C. J. Hooker, I. N. Ross, M. J. Shaw, W. T. Toner, Opt. Commun. 66, 127 (1988).
[CrossRef]

Johann, U.

Lee, P. H. Y.

Liu, P.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Lotem, H.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Luk, T. S.

McIntyre, I. A.

McPherson, A.

Misewich, J.

Morita, N.

N. Morita, T. Yajima, Appl. Phys. B 28, 25 (1982).
[CrossRef]

Mückenheim, W.

S. Szatmári, F. P. Schäfer, E. Müller-Horsche, W. Mückenheim, Opt. Commun. 63, 305 (1987).
[CrossRef]

Müller-Horsche, E.

S. Szatmári, F. P. Schäfer, E. Müller-Horsche, W. Mückenheim, Opt. Commun. 63, 305 (1987).
[CrossRef]

Rayner, D. M.

D. M. Rayner, P. A. Hackett, C. Willis, Rev. Sci. Instrum. 53, 537 (1982).
[CrossRef]

Rhodes, C. K.

Roberts, J. P.

Ross, I. N.

J. R. M. Barr, N. J. Everall, C. J. Hooker, I. N. Ross, M. J. Shaw, W. T. Toner, Opt. Commun. 66, 127 (1988).
[CrossRef]

Sarukura, N.

M. Watanabe, A. Endoh, N. Sarukura, S. Watanabe, Appl. Phys. B 48, 417 (1989).
[CrossRef]

Schäfer, F. P.

S. Szatmári, F. P. Schäfer, Opt. Commun. 68, 196 (1988).
[CrossRef]

S. Szatmári, F. P. Schäfer, E. Müller-Horsche, W. Mückenheim, Opt. Commun. 63, 305 (1987).
[CrossRef]

Schwarzenbach, A. P.

Shaw, M. J.

J. R. M. Barr, N. J. Everall, C. J. Hooker, I. N. Ross, M. J. Shaw, W. T. Toner, Opt. Commun. 66, 127 (1988).
[CrossRef]

Smith, W. L.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Sorokin, P. P.

Szatmári, S.

S. Szatmári, F. P. Schäfer, Opt. Commun. 68, 196 (1988).
[CrossRef]

S. Szatmári, F. P. Schäfer, E. Müller-Horsche, W. Mückenheim, Opt. Commun. 63, 305 (1987).
[CrossRef]

Taylor, A. J.

Toner, W. T.

J. R. M. Barr, N. J. Everall, C. J. Hooker, I. N. Ross, M. J. Shaw, W. T. Toner, Opt. Commun. 66, 127 (1988).
[CrossRef]

Watanabe, M.

M. Watanabe, A. Endoh, N. Sarukura, S. Watanabe, Appl. Phys. B 48, 417 (1989).
[CrossRef]

Watanabe, S.

M. Watanabe, A. Endoh, N. Sarukura, S. Watanabe, Appl. Phys. B 48, 417 (1989).
[CrossRef]

Willis, C.

D. M. Rayner, P. A. Hackett, C. Willis, Rev. Sci. Instrum. 53, 537 (1982).
[CrossRef]

Yajima, T.

N. Morita, T. Yajima, Appl. Phys. B 28, 25 (1982).
[CrossRef]

Appl. Phys. B (2)

M. Watanabe, A. Endoh, N. Sarukura, S. Watanabe, Appl. Phys. B 48, 417 (1989).
[CrossRef]

N. Morita, T. Yajima, Appl. Phys. B 28, 25 (1982).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

S. Szatmári, F. P. Schäfer, Opt. Commun. 68, 196 (1988).
[CrossRef]

J. R. M. Barr, N. J. Everall, C. J. Hooker, I. N. Ross, M. J. Shaw, W. T. Toner, Opt. Commun. 66, 127 (1988).
[CrossRef]

S. Szatmári, F. P. Schäfer, E. Müller-Horsche, W. Mückenheim, Opt. Commun. 63, 305 (1987).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. B (1)

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Rev. Sci. Instrum. (1)

D. M. Rayner, P. A. Hackett, C. Willis, Rev. Sci. Instrum. 53, 537 (1982).
[CrossRef]

Other (1)

A. Endoh, Abteilung Laserphysik, Max-Planck-Institut für Biophysikalische Chemie, D-3400 Göttingen, Federal Republic of Germany (personal communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Measured values of transmission as a function of intensity for fused silica, CaF2, LiF, and MgF2. The solid curves are the best fits to the measured data assuming a two-photon absorption mechanism for fused silica and a three-photon absorption mechanism for CaF2, LiF, and MgF2.

Fig. 2
Fig. 2

Transmission of fused silica, CaF2, LiF, and MgF2 as a function of the number of shots at 120 GW/cm2.

Tables (2)

Tables Icon

Table 1 Multiphoton Absorption Coefficients at 248 nm

Tables Icon

Table 2 Ratio of the Scattered to the Incident Energy for Different Materials at 120 GW/cm2

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I out ( t ) = I i ( 1 R ) 2 { ( n 1 ) α l [ ( 1 R ) I i ] n 1 + [ sech ( t ) ] 2 ( n 1 ) } 1 / ( n 1 ) ,
T = ( 1 R ) 2 2 × d t { ( n 1 ) α l [ ( 1 R ) I i ] ( n 1 ) + [ sech ( t ) ] 2 ( n 1 ) } 1 / ( n 1 ) .

Metrics