Abstract

A novel architecture for a reconfigurable optical routing switch using photorefractive crystals with nondestructive readout is presented. This design reduces the order of complexity from n2 to n for a general two-wavelength n × n holographic interconnection network. The packing capacity of the network is discussed and is calculated to be of the order of 1000 × 1000 for an ideal volume holographic recording material. In practice, we show that the actual value is constrained by the number of gratings that can be multiplexed in a single photorefractive crystal. A 2 × 3 switch is demonstrated by using a Bi12GeO20 crystal with 514-nm writing beams and 633-nm signal (readout) beams.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Pauliat, J. P. Herriau, A. Delboulbe, G. Rosen, J. P. Huignard, J. Opt. Soc. Am. B 3, 306 (1986).
    [CrossRef]
  2. A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Varma, Computer 20, 50 (1987).
    [CrossRef]
  3. A. Marrakchi, J. P. Huignard, P. Gunter, Appl. Phys. 24, 131 (1981).
    [CrossRef]
  4. F. Vachss, L. Hesselink, J. Opt. Soc. Am. A 4, 325 (1987).
    [CrossRef]
  5. T. K. Gaylord, in Handbook of Optical Holography, H. J. Caulfield, ed. (Academic, New York, 1979), pp. 401–407.
  6. D. Psaltis, D. Brady, K. Wagner, Appl. Opt. 27, 1752 (1988).
    [CrossRef]
  7. T. K. Gaylord, F. K. Tittel, J. Appl. Phys. 44, 4771 (1973).
    [CrossRef]
  8. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), p. 130.

1988 (1)

1987 (2)

A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Varma, Computer 20, 50 (1987).
[CrossRef]

F. Vachss, L. Hesselink, J. Opt. Soc. Am. A 4, 325 (1987).
[CrossRef]

1986 (1)

1981 (1)

A. Marrakchi, J. P. Huignard, P. Gunter, Appl. Phys. 24, 131 (1981).
[CrossRef]

1973 (1)

T. K. Gaylord, F. K. Tittel, J. Appl. Phys. 44, 4771 (1973).
[CrossRef]

Brady, D.

Delboulbe, A.

Gaylord, T. K.

T. K. Gaylord, F. K. Tittel, J. Appl. Phys. 44, 4771 (1973).
[CrossRef]

T. K. Gaylord, in Handbook of Optical Holography, H. J. Caulfield, ed. (Academic, New York, 1979), pp. 401–407.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), p. 130.

Gunter, P.

A. Marrakchi, J. P. Huignard, P. Gunter, Appl. Phys. 24, 131 (1981).
[CrossRef]

Herriau, J. P.

Hesselink, L.

Huignard, J. P.

Jenkins, B. K.

A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Varma, Computer 20, 50 (1987).
[CrossRef]

Marrakchi, A.

A. Marrakchi, J. P. Huignard, P. Gunter, Appl. Phys. 24, 131 (1981).
[CrossRef]

Pauliat, G.

Psaltis, D.

Raghavendra, C. S.

A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Varma, Computer 20, 50 (1987).
[CrossRef]

Rosen, G.

Sawchuck, A. A.

A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Varma, Computer 20, 50 (1987).
[CrossRef]

Tittel, F. K.

T. K. Gaylord, F. K. Tittel, J. Appl. Phys. 44, 4771 (1973).
[CrossRef]

Vachss, F.

Varma, A.

A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Varma, Computer 20, 50 (1987).
[CrossRef]

Wagner, K.

Appl. Opt. (1)

Appl. Phys. (1)

A. Marrakchi, J. P. Huignard, P. Gunter, Appl. Phys. 24, 131 (1981).
[CrossRef]

Computer (1)

A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Varma, Computer 20, 50 (1987).
[CrossRef]

J. Appl. Phys. (1)

T. K. Gaylord, F. K. Tittel, J. Appl. Phys. 44, 4771 (1973).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Other (2)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), p. 130.

T. K. Gaylord, in Handbook of Optical Holography, H. J. Caulfield, ed. (Academic, New York, 1979), pp. 401–407.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Two-wavelength conical interconnect system based on multiplexed volume gratings stored in a photorefractive crystal.

Fig. 2
Fig. 2

Wave-vector diagram for the conical geometry.

Fig. 3
Fig. 3

Angular selectivity profiles for signal input beam 1. From the top curve to the bottom curve the values are K12, K13, K14, and K15, respectively.

Fig. 4
Fig. 4

Partitioning of the conical surface into distinct input and output fields.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ θ i = k 0 / k i , min ,
K i , min = 2 k s cos γ sin ( θ i / 2 ) ,
d N in d θ = 1 Δ θ i = 2 k s cos γ k 0 sin ( θ i / 2 ) .
N in = θ sep θ sep + θ in d N in d θ d θ = 4 k s cos γ k 0 [ cos ( θ sep 2 ) cos ( θ sep + θ in 2 ) ] .
Δ θ 0 = 1 . 22 λ s w n 0 cos γ ,
N out = θ out / Δ θ 0 .
m = Δ n max d λ s sin 1 ( η ) 1 / 2 ,
m = 2 [ Δ n max d λ s sin 1 ( η ) 1 / 2 ] 2 .

Metrics