Abstract

A simple analysis of the interference between two Gaussian pulses is presented. It is shown that the resulting pulse may be shorter than the initial ones if the interference phase is properly adjusted. The compression effect results from the difference of the durations of the interfering pulses and from their phase modulation. This mechanism may be implemented in mode-locked lasers, either by adjunction of a coupled cavity or use of a pulse-shaping Michelson interferometer as the output coupler. Gain-bandwidth-limited pulses may then be obtained. The model provides analytical expressions for pulse duration.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, R. H. Stolen, Opt. Lett. 9, 13 (1984).
    [Crossref] [PubMed]
  2. P. N. Kean, X. Zhu, D. W. Crust, R. S. Grant, N. Langford, W. Sibbett, Opt. Lett. 14, 39 (1989).
    [Crossref] [PubMed]
  3. K. J. Blow, B. P. Nelson, Opt. Lett. 13, 1026 (1988).
    [Crossref] [PubMed]
  4. K. J. Blow, D. Wood, J. Opt. Soc. Am. B 5, 629 (1988).
    [Crossref]
  5. P. A. Bélanger, J. Opt. Soc. Am. B 5, 793 (1988).
    [Crossref]
  6. F. Ouellette, M. Piché, Opt. Commun. 60, 99 (1986).
    [Crossref]
  7. J. Mark, L. Y. Liu, K. L. Hall, H. A. Haus, E. P. Ippen, Opt. Lett. 14, 48(1989).
    [Crossref] [PubMed]
  8. D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum Electron. QE-6, 694 (1970).
    [Crossref]
  9. M. Morin, M. Piché, R. Tremblay, Opt. Commun. 68, 213 (1988).
    [Crossref]

1989 (2)

1988 (4)

1986 (1)

F. Ouellette, M. Piché, Opt. Commun. 60, 99 (1986).
[Crossref]

1984 (1)

1970 (1)

D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum Electron. QE-6, 694 (1970).
[Crossref]

Bélanger, P. A.

Blow, K. J.

Crust, D. W.

Grant, R. S.

Hall, K. L.

Haus, H. A.

Ippen, E. P.

Kean, P. N.

Kuizenga, D. J.

D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum Electron. QE-6, 694 (1970).
[Crossref]

Langford, N.

Liu, L. Y.

Mark, J.

Mollenauer, L. F.

Morin, M.

M. Morin, M. Piché, R. Tremblay, Opt. Commun. 68, 213 (1988).
[Crossref]

Nelson, B. P.

Ouellette, F.

F. Ouellette, M. Piché, Opt. Commun. 60, 99 (1986).
[Crossref]

Piché, M.

M. Morin, M. Piché, R. Tremblay, Opt. Commun. 68, 213 (1988).
[Crossref]

F. Ouellette, M. Piché, Opt. Commun. 60, 99 (1986).
[Crossref]

Sibbett, W.

Siegman, A. E.

D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum Electron. QE-6, 694 (1970).
[Crossref]

Stolen, R. H.

Tremblay, R.

M. Morin, M. Piché, R. Tremblay, Opt. Commun. 68, 213 (1988).
[Crossref]

Wood, D.

Zhu, X.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Mode-locked laser with a pulse-shaping Michelson interferometer as the output coupler, (b) Mode-locked laser with a pulse-shaping coupled cavity.

Fig. 2
Fig. 2

Equilibrium state of a coupled-cavity laser (R = 0.9, Rs = 0.1): (a) output-pulse-normalized duration and (b) saturated round-trip gain. The coupled-cavity length is adjusted for maximum compression.

Fig. 3
Fig. 3

Output-pulse-normalized duration of a coupled-cavity laser (R = 0.9, Rs = 0.01, 0.05, 0.1, and 0.2) with (a) a phase-modulating PS, (b) a compressive-amplitude PS, and (c) a broadening PS.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E Σ ( t ) = exp ( α 1 t 2 ) + a exp ( i θ ) exp [ ( α 2 + i β 2 ) t 2 ] .
E Σ ( t ) exp ( α 1 t 2 ) exp { a exp ( i θ ) exp [ ( Δ α + i β 2 ) t 2 ] } ,
E Σ ( t ) exp [ a exp ( i θ ) ] exp { [ α 1 a exp ( i θ ) ( Δ α + i β 2 ) ] t 2 }
α Σ = α 1 + a [ Δ α cos ( θ ) + β 2 sin ( θ ) ] ,
β = a [ β 2 cos ( θ ) Δ α sin ( θ ) ] .
C i = [ 1 + a α 1 ( Δ α cos θ + β 2 sin θ ) ] 1 / 2 .
sin ( θ ) = β 2 / ( β 2 2 + Δ α 2 ) 1 / 2 and cos ( θ ) = Δ α / ( β 2 2 + Δ α 2 ) 1 / 2 ,
C i = [ 1 + a α 1 ( β 2 2 + Δ α 2 ) 1 / 2 ] 1 / 2 .
E 2 ( t ) = C p 1 / 2 E 1 exp [ ( C p 2 ± i C h 2 ) α 1 t 2 ] ,
α ( Δ ω ) 2 = f 16 g ( 1 f / T ) ,
g = ln ( 1 + f R ) 1 / 2 + ( 1 C p 2 ) R s T ( C p / R ) 1 / 2 [ ( 1 C p 2 ) 2 + C h 4 ] 1 / 2 .
f = T R s ( C p / R ) 1 / 2 [ ( 1 C p 2 ) 2 + C h 4 ] 1 / 2 ,

Metrics