Abstract

We have developed a simple cavity-length-stabilization method appropriate for single-longitudinal-mode pulsed lasers that use grazing-incidence gratings. Our technique relies on the detection of a minute (<0.5-mrad) angular variation in the output beam direction caused by a detuning between the cavity-mode frequency and the center frequency of the grating passband. In a prototype system implementing this stabilization scheme we have generated single-longitudinal-mode scans of up to 290 cm−1.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Littman, Appl. Opt. 23, 4465 (1984).
    [CrossRef] [PubMed]
  2. K. Liu, M. Littman, Opt. Lett. 6, 117 (1981).
    [CrossRef] [PubMed]
  3. Commercial product by Lumonics (Model Hyperdye-SLM Series).
  4. K. W. Kangas, D. D. Lowenthal, C. H. Muller, Opt. Lett. 14, 21 (1989).
    [CrossRef] [PubMed]
  5. A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1971), pp. 308–309.
  6. P. Esherick, A. Owyoung, J. Opt. Soc. Am. B 4, 41 (1987).
    [CrossRef]
  7. S. Gerstenkorn, P. Luc, Atlas du spectre d’absorption de la molecule d’iode 14800-20000 cm−1 (Editions du Centre National de la Recherche Scientifique, Paris, 1978).

1989 (1)

1987 (1)

1984 (1)

1981 (1)

Esherick, P.

Gerstenkorn, S.

S. Gerstenkorn, P. Luc, Atlas du spectre d’absorption de la molecule d’iode 14800-20000 cm−1 (Editions du Centre National de la Recherche Scientifique, Paris, 1978).

Kangas, K. W.

Littman, M.

Liu, K.

Lowenthal, D. D.

Luc, P.

S. Gerstenkorn, P. Luc, Atlas du spectre d’absorption de la molecule d’iode 14800-20000 cm−1 (Editions du Centre National de la Recherche Scientifique, Paris, 1978).

Muller, C. H.

Owyoung, A.

Siegman, A. E.

A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1971), pp. 308–309.

Appl. Opt. (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Other (3)

Commercial product by Lumonics (Model Hyperdye-SLM Series).

A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1971), pp. 308–309.

S. Gerstenkorn, P. Luc, Atlas du spectre d’absorption de la molecule d’iode 14800-20000 cm−1 (Editions du Centre National de la Recherche Scientifique, Paris, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Laser used, of the Littman variety,1 with a PZT-translated rear mirror (M1). Cavity-length errors result in a deviation in the output beam direction (ΔӨ), which is sensed by the two-element photodiode (PD). The laser is tuned by rotating mirror M2 in nominal accordance with the prescription of Liu and Littman.2

Fig. 2
Fig. 2

Effect of cavity-length changes on (a) the beam deflection and (b) the laser frequency. The solid curves are taken with the laser adjusted for optimal SLM operation. The cavity was shortened (lengthened) by 60 nm for the dashed (dashed–dotted) curves.

Fig. 3
Fig. 3

Curve (a), 10-cm−1 portion of a room-temperature I2 fluorescence excitation spectrum. Curve (b), the tabulated positions and relative absorption strengths from Ref. 7. Curve (c), transmission through the 0.5-cm−1 marker étalon. The arrow indicates the point at which the stabilization circuit was intentionally reset.

Fig. 4
Fig. 4

Cavity-length correction required for the 290-cm−1 scan. The abrupt change at 15 309.7 cm−1 is an intentional reset of the stabilization circuit.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ = d ( sin α + sin β ) ,
Δ Ө 2 Δ λ / ( d cos β ) .
Δ Ө mode λ 2 / ( L d cos β ) .
Δ Ө ha = w ( L ) / R ( L ) = w 0 [ 1 + ( L / z r ) 2 / ( L + z r 2 / L ) ] 1 / 2 ,
w 0 d L cos β / π λ .

Metrics