Abstract

A two-dimensional synthetic-aperture-radar (SAR) phase-correction algorithm is described as a natural extension of a one-dimensional technique developed previously. It embodies some similarities of phase-gradient speckle imaging and incorporates improvements in phase estimation. Diffraction-limited performance has been obtained on actual SAR imagery regardless of scene content or phase-error structure. The algorithm is computationally efficient, robust, and easily implemented on a general-purpose computer or special-purpose hardware.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Eichel, D. C. Ghiglia, C. V. Jakowatz, Opt. Lett. 14, 1 (1989).
    [CrossRef] [PubMed]
  2. G. J. M. Aitken, R. Johnson, R. Houtman, Opt. Commun. 56, 379 (1986).
    [CrossRef]
  3. G. J. M. Aitken, R. Johnson, Appl. Opt. 26, 4246 (1987).
    [CrossRef] [PubMed]
  4. R. Johnson, G. J. M. Aitken, J. Opt. Soc. Am. A 6, 56 (1989).
    [CrossRef]
  5. K. Knox, in Digest of International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1975), p. 94.
  6. K. T. Knox, B. J. Thompson, Astrophys. J. 193, L45 (1974).
    [CrossRef]
  7. P. H. Eichel, C. V. Jakowatz, Opt. Lett. 14, 1101 (1989).
    [CrossRef] [PubMed]
  8. D. C. Ghiglia, L. A. Romero, Opt. Lett. 14, 1107 (1989).
    [CrossRef] [PubMed]
  9. W. M. Brown, L. J. Porcello, IEEE Spectrum 6, 111 (1962).
  10. D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).
    [CrossRef]
  11. R. O. Harger, Synthetic Aperture Radar Systems: Theory and Design (Academic, New York, 1970).
  12. D. C. Munson, J. D. O’Brien, W. K. Jenkins, Proc. IEEE 71, 987 (1983).
    [CrossRef]
  13. A. R. Thompson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, New York, 1986).

1989 (4)

1987 (1)

1986 (1)

G. J. M. Aitken, R. Johnson, R. Houtman, Opt. Commun. 56, 379 (1986).
[CrossRef]

1984 (1)

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).
[CrossRef]

1983 (1)

D. C. Munson, J. D. O’Brien, W. K. Jenkins, Proc. IEEE 71, 987 (1983).
[CrossRef]

1974 (1)

K. T. Knox, B. J. Thompson, Astrophys. J. 193, L45 (1974).
[CrossRef]

1962 (1)

W. M. Brown, L. J. Porcello, IEEE Spectrum 6, 111 (1962).

Aitken, G. J. M.

Ausherman, D. A.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).
[CrossRef]

Brown, W. M.

W. M. Brown, L. J. Porcello, IEEE Spectrum 6, 111 (1962).

Eichel, P. H.

Ghiglia, D. C.

Harger, R. O.

R. O. Harger, Synthetic Aperture Radar Systems: Theory and Design (Academic, New York, 1970).

Houtman, R.

G. J. M. Aitken, R. Johnson, R. Houtman, Opt. Commun. 56, 379 (1986).
[CrossRef]

Jakowatz, C. V.

Jenkins, W. K.

D. C. Munson, J. D. O’Brien, W. K. Jenkins, Proc. IEEE 71, 987 (1983).
[CrossRef]

Johnson, R.

Jones, H. M.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).
[CrossRef]

Knox, K.

K. Knox, in Digest of International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1975), p. 94.

Knox, K. T.

K. T. Knox, B. J. Thompson, Astrophys. J. 193, L45 (1974).
[CrossRef]

Kozma, A.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).
[CrossRef]

Moran, J. M.

A. R. Thompson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, New York, 1986).

Munson, D. C.

D. C. Munson, J. D. O’Brien, W. K. Jenkins, Proc. IEEE 71, 987 (1983).
[CrossRef]

O’Brien, J. D.

D. C. Munson, J. D. O’Brien, W. K. Jenkins, Proc. IEEE 71, 987 (1983).
[CrossRef]

Poggio, E. C.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).
[CrossRef]

Porcello, L. J.

W. M. Brown, L. J. Porcello, IEEE Spectrum 6, 111 (1962).

Romero, L. A.

Swenson, G. W.

A. R. Thompson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, New York, 1986).

Thompson, A. R.

A. R. Thompson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, New York, 1986).

Thompson, B. J.

K. T. Knox, B. J. Thompson, Astrophys. J. 193, L45 (1974).
[CrossRef]

Walker, J. L.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).
[CrossRef]

Appl. Opt. (1)

Astrophys. J. (1)

K. T. Knox, B. J. Thompson, Astrophys. J. 193, L45 (1974).
[CrossRef]

IEEE Spectrum (1)

W. M. Brown, L. J. Porcello, IEEE Spectrum 6, 111 (1962).

IEEE Trans. Aerosp. Electron. Syst. (1)

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

G. J. M. Aitken, R. Johnson, R. Houtman, Opt. Commun. 56, 379 (1986).
[CrossRef]

Opt. Lett. (3)

Proc. IEEE (1)

D. C. Munson, J. D. O’Brien, W. K. Jenkins, Proc. IEEE 71, 987 (1983).
[CrossRef]

Other (3)

A. R. Thompson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, New York, 1986).

K. Knox, in Digest of International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1975), p. 94.

R. O. Harger, Synthetic Aperture Radar Systems: Theory and Design (Academic, New York, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

(a) SAR image of the Solar Thermal Test Facility at Sandia National Laboratories, Albuquerque, New Mexico, with a 2-D phase error applied, (b) The focused image in (a) after 10 iterations of the phase-gradient autofocus algorithm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

g ( x , y ) = f ( x , y ) * h ( x , y ) ,
F { h ( x , y ) } = exp [ j ϕ ( u , υ ) ]
g ( x , y ) = k , l a k , l s ( x x k , y y l ) * h ( x , y ) ,
G ( u , υ ) n = | G ( u , υ ) n | exp { j [ ϕ ( u , υ ) n + ϕ ( u , υ ) ] } ,
ϕ ˆ ( u , υ ) = n Im { G u ( u , υ ) n G * ( u , υ ) n } n | G ( u , υ ) n | 2 = ϕ u ( u , υ ) + n | G ( u , υ ) n | 2 ϕ u ( u , υ ) n n | G ( u , υ ) n | 2
ϕ ˆ ( u , υ ) = n Im { G υ ( u , υ ) n G * ( u , υ ) n } n | G ( u , υ ) n | 2 = ϕ υ ( u , υ ) + n | G ( u , υ ) n | 2 ϕ υ ( u , υ ) n n | G ( u , υ ) n | 2

Metrics