Abstract

I argue that optics can reduce the energy for irreversible communication of logic-level signals inside digital switching and processing machines. This is because quantum detectors, quantum sources, and modulators can perform an effective impedance transformation that matches the high impedances of small devices to the low impedances encountered in electromagnetic propagation. Current physics and device concepts are sufficient to realize this advantage over electrical communications given appropriate integration technology. This energy argument suggests that all except the shortest intrachip communications should be optical.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Keyes, Proc. IEEE 63, 740 (1975).
    [CrossRef]
  2. R. W. Keyes, Proc. IEEE 69, 267 (1981).
    [CrossRef]
  3. P. W. Smith, Bell Syst. Tech. J. 61, 1975 (1982).
  4. D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE-21, 1462 (1985).
    [CrossRef]
  5. R. W. Keyes, IEEE J. Solid-State Circuits SC-17, 1232 (1982).
    [CrossRef]
  6. See, e.g., the special issue on “Optical Interconnections,” L. D. Hutcheson, ed., Opt. Eng.25(10) (1986).
  7. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, Appl. Opt. 27, 1742 (1988).
    [CrossRef] [PubMed]
  8. A. Huang, Proc. IEEE 72, 780 (1984).
    [CrossRef]
  9. R. Landauer, Appl. Phys. Lett. 51, 2056 (1987).
    [CrossRef]
  10. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
    [CrossRef] [PubMed]
  11. W. V. Smith, Proc. IEEE 54, 1295 (1966).
    [CrossRef]
  12. K. Y. Lau, P. L. Derry, A. Yariv, Appl. Phys. Lett. 52, 88 (1988).
    [CrossRef]
  13. R. C. Alferness, Science 234, 825 (1986).
    [CrossRef] [PubMed]
  14. For a review of quantum-well electroabsorption physics and devices, see D. A. B. Miller, D. S. Chemla, S. Schmitt-Rink, in Optical Nonlinearities and Instabilities in Semiconductors, H. Haug, ed. (Academic, Orlando, Fla., 1988), p. 325.
  15. D. A. B. Miller, J. E. Henry, A. C. Gossard, J. H. English, Appl. Phys. Lett. 49, 821 (1986); D. A. B. Miller, M. D. Feuer, T. Y. Chang, S. C. Shunk, J. E. Henry, D. J. Burrows, D. S. Chemla, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper TUE1.
    [CrossRef]

1988 (2)

1987 (1)

R. Landauer, Appl. Phys. Lett. 51, 2056 (1987).
[CrossRef]

1986 (2)

R. C. Alferness, Science 234, 825 (1986).
[CrossRef] [PubMed]

D. A. B. Miller, J. E. Henry, A. C. Gossard, J. H. English, Appl. Phys. Lett. 49, 821 (1986); D. A. B. Miller, M. D. Feuer, T. Y. Chang, S. C. Shunk, J. E. Henry, D. J. Burrows, D. S. Chemla, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper TUE1.
[CrossRef]

1985 (2)

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
[CrossRef] [PubMed]

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

1984 (1)

A. Huang, Proc. IEEE 72, 780 (1984).
[CrossRef]

1982 (2)

P. W. Smith, Bell Syst. Tech. J. 61, 1975 (1982).

R. W. Keyes, IEEE J. Solid-State Circuits SC-17, 1232 (1982).
[CrossRef]

1981 (1)

R. W. Keyes, Proc. IEEE 69, 267 (1981).
[CrossRef]

1975 (1)

R. W. Keyes, Proc. IEEE 63, 740 (1975).
[CrossRef]

1966 (1)

W. V. Smith, Proc. IEEE 54, 1295 (1966).
[CrossRef]

Alferness, R. C.

R. C. Alferness, Science 234, 825 (1986).
[CrossRef] [PubMed]

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

For a review of quantum-well electroabsorption physics and devices, see D. A. B. Miller, D. S. Chemla, S. Schmitt-Rink, in Optical Nonlinearities and Instabilities in Semiconductors, H. Haug, ed. (Academic, Orlando, Fla., 1988), p. 325.

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Derry, P. L.

K. Y. Lau, P. L. Derry, A. Yariv, Appl. Phys. Lett. 52, 88 (1988).
[CrossRef]

English, J. H.

D. A. B. Miller, J. E. Henry, A. C. Gossard, J. H. English, Appl. Phys. Lett. 49, 821 (1986); D. A. B. Miller, M. D. Feuer, T. Y. Chang, S. C. Shunk, J. E. Henry, D. J. Burrows, D. S. Chemla, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper TUE1.
[CrossRef]

Esener, S. C.

Feldman, M. R.

Gossard, A. C.

D. A. B. Miller, J. E. Henry, A. C. Gossard, J. H. English, Appl. Phys. Lett. 49, 821 (1986); D. A. B. Miller, M. D. Feuer, T. Y. Chang, S. C. Shunk, J. E. Henry, D. J. Burrows, D. S. Chemla, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper TUE1.
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Guest, C. C.

Henry, J. E.

D. A. B. Miller, J. E. Henry, A. C. Gossard, J. H. English, Appl. Phys. Lett. 49, 821 (1986); D. A. B. Miller, M. D. Feuer, T. Y. Chang, S. C. Shunk, J. E. Henry, D. J. Burrows, D. S. Chemla, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper TUE1.
[CrossRef]

Hollberg, L. W.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
[CrossRef] [PubMed]

Huang, A.

A. Huang, Proc. IEEE 72, 780 (1984).
[CrossRef]

Keyes, R. W.

R. W. Keyes, IEEE J. Solid-State Circuits SC-17, 1232 (1982).
[CrossRef]

R. W. Keyes, Proc. IEEE 69, 267 (1981).
[CrossRef]

R. W. Keyes, Proc. IEEE 63, 740 (1975).
[CrossRef]

Landauer, R.

R. Landauer, Appl. Phys. Lett. 51, 2056 (1987).
[CrossRef]

Lau, K. Y.

K. Y. Lau, P. L. Derry, A. Yariv, Appl. Phys. Lett. 52, 88 (1988).
[CrossRef]

Lee, S. H.

Mertz, J. C.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
[CrossRef] [PubMed]

Miller, D. A. B.

D. A. B. Miller, J. E. Henry, A. C. Gossard, J. H. English, Appl. Phys. Lett. 49, 821 (1986); D. A. B. Miller, M. D. Feuer, T. Y. Chang, S. C. Shunk, J. E. Henry, D. J. Burrows, D. S. Chemla, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper TUE1.
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

For a review of quantum-well electroabsorption physics and devices, see D. A. B. Miller, D. S. Chemla, S. Schmitt-Rink, in Optical Nonlinearities and Instabilities in Semiconductors, H. Haug, ed. (Academic, Orlando, Fla., 1988), p. 325.

Schmitt-Rink, S.

For a review of quantum-well electroabsorption physics and devices, see D. A. B. Miller, D. S. Chemla, S. Schmitt-Rink, in Optical Nonlinearities and Instabilities in Semiconductors, H. Haug, ed. (Academic, Orlando, Fla., 1988), p. 325.

Slusher, R. E.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
[CrossRef] [PubMed]

Smith, P. W.

P. W. Smith, Bell Syst. Tech. J. 61, 1975 (1982).

Smith, W. V.

W. V. Smith, Proc. IEEE 54, 1295 (1966).
[CrossRef]

Valley, J. F.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
[CrossRef] [PubMed]

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Yariv, A.

K. Y. Lau, P. L. Derry, A. Yariv, Appl. Phys. Lett. 52, 88 (1988).
[CrossRef]

Yurke, B.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

D. A. B. Miller, J. E. Henry, A. C. Gossard, J. H. English, Appl. Phys. Lett. 49, 821 (1986); D. A. B. Miller, M. D. Feuer, T. Y. Chang, S. C. Shunk, J. E. Henry, D. J. Burrows, D. S. Chemla, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper TUE1.
[CrossRef]

R. Landauer, Appl. Phys. Lett. 51, 2056 (1987).
[CrossRef]

K. Y. Lau, P. L. Derry, A. Yariv, Appl. Phys. Lett. 52, 88 (1988).
[CrossRef]

Bell Syst. Tech. J. (1)

P. W. Smith, Bell Syst. Tech. J. 61, 1975 (1982).

IEEE J. Quantum Electron. (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

IEEE J. Solid-State Circuits (1)

R. W. Keyes, IEEE J. Solid-State Circuits SC-17, 1232 (1982).
[CrossRef]

Phys. Rev. Lett. (1)

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
[CrossRef] [PubMed]

Proc. IEEE (4)

W. V. Smith, Proc. IEEE 54, 1295 (1966).
[CrossRef]

R. W. Keyes, Proc. IEEE 63, 740 (1975).
[CrossRef]

R. W. Keyes, Proc. IEEE 69, 267 (1981).
[CrossRef]

A. Huang, Proc. IEEE 72, 780 (1984).
[CrossRef]

Science (1)

R. C. Alferness, Science 234, 825 (1986).
[CrossRef] [PubMed]

Other (2)

For a review of quantum-well electroabsorption physics and devices, see D. A. B. Miller, D. S. Chemla, S. Schmitt-Rink, in Optical Nonlinearities and Instabilities in Semiconductors, H. Haug, ed. (Academic, Orlando, Fla., 1988), p. 325.

See, e.g., the special issue on “Optical Interconnections,” L. D. Hutcheson, ed., Opt. Eng.25(10) (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Comparison of optical and electrical communication energies. Solid line, electrical energies; dashed lines, optical energies. In both cases, 1 V is assumed to be generated in the receiving device. The energy calculated is the minimum energy that must be launched into the transmission medium to achieve the desired voltage at the receiver. For the optical case, I assume unit quantum efficiency (one photoelectron per incident photon) with a photon energy of 1.5 eV (corresponding to a wavelength of ~830 nm) and a depletion layer thickness of 1 μm, with a dielectric constant of 13. The top scale is the length of line (either lossless or resistive) that can be fully charged with the energy given (assuming capacitance per unit length of 67 pF/m, the same as that of a 50-Ω lossless air-spaced coaxial line). The bottom scale is the maximum duration allowed in a lossless line for a square 1-V pulse with the energy given.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E R = C V 0 2 ,
E LL = η V 0 2 τ / Z 0 .
E L = ℏω V 0 C D βe ,

Metrics