Abstract

We present theoretical and experimental results of a novel fiber-optic wavelength-division multiplexing (WDM) design employing a broadband (>150-nm) dichromated gelatin volume holographic grating operating in a reflective Littrow configuration with on-axis optics, a single lens, and one fiber array. This configuration can achieve better than −1.5-dB insertion loss and −40-dB cross talk for a 6-channel system and −2.5-dB insertion loss and −20-dB cross talk for a 12-channel system with 15-nm channel spacing. For an experimental 4-channel WDM unit we measured better than −1.5-dB insertion loss for all channels and less than −32-dB cross talk. This design can provide cost and performance benefits for local area network communication applications.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Tomlinson, Appl. Opt. 16, 2180 (1977).
    [CrossRef] [PubMed]
  2. G. Winzer, IEEE J. Lightwave Technol. LT-2, 369 (1984).
    [CrossRef]
  3. J. Lipson, C. A. Young, P. D. Yeates, J. C. Masland, S. A. Wartonick, G. T. Harvey, P. H. Read, IEEE J. Lightwave Technol. LT-3, 16 (1985).
    [CrossRef]
  4. H. Toba, K. Inoue, K. Nosu, Electron. Lett. 21, 388 (1985).
    [CrossRef]
  5. J. Ng, P. Harvey, B. Moslehi, T. Jannson, in Digest of Optical Society of America Annual Meeting (Optical Society of America, Washington, D.C., 1988), paper MR3.
  6. B. J. Chang, C. D. Leonard, Appl. Opt. 18, 2407 (1979).
    [CrossRef] [PubMed]

1985

J. Lipson, C. A. Young, P. D. Yeates, J. C. Masland, S. A. Wartonick, G. T. Harvey, P. H. Read, IEEE J. Lightwave Technol. LT-3, 16 (1985).
[CrossRef]

H. Toba, K. Inoue, K. Nosu, Electron. Lett. 21, 388 (1985).
[CrossRef]

1984

G. Winzer, IEEE J. Lightwave Technol. LT-2, 369 (1984).
[CrossRef]

1979

1977

Chang, B. J.

Harvey, G. T.

J. Lipson, C. A. Young, P. D. Yeates, J. C. Masland, S. A. Wartonick, G. T. Harvey, P. H. Read, IEEE J. Lightwave Technol. LT-3, 16 (1985).
[CrossRef]

Harvey, P.

J. Ng, P. Harvey, B. Moslehi, T. Jannson, in Digest of Optical Society of America Annual Meeting (Optical Society of America, Washington, D.C., 1988), paper MR3.

Inoue, K.

H. Toba, K. Inoue, K. Nosu, Electron. Lett. 21, 388 (1985).
[CrossRef]

Jannson, T.

J. Ng, P. Harvey, B. Moslehi, T. Jannson, in Digest of Optical Society of America Annual Meeting (Optical Society of America, Washington, D.C., 1988), paper MR3.

Leonard, C. D.

Lipson, J.

J. Lipson, C. A. Young, P. D. Yeates, J. C. Masland, S. A. Wartonick, G. T. Harvey, P. H. Read, IEEE J. Lightwave Technol. LT-3, 16 (1985).
[CrossRef]

Masland, J. C.

J. Lipson, C. A. Young, P. D. Yeates, J. C. Masland, S. A. Wartonick, G. T. Harvey, P. H. Read, IEEE J. Lightwave Technol. LT-3, 16 (1985).
[CrossRef]

Moslehi, B.

J. Ng, P. Harvey, B. Moslehi, T. Jannson, in Digest of Optical Society of America Annual Meeting (Optical Society of America, Washington, D.C., 1988), paper MR3.

Ng, J.

J. Ng, P. Harvey, B. Moslehi, T. Jannson, in Digest of Optical Society of America Annual Meeting (Optical Society of America, Washington, D.C., 1988), paper MR3.

Nosu, K.

H. Toba, K. Inoue, K. Nosu, Electron. Lett. 21, 388 (1985).
[CrossRef]

Read, P. H.

J. Lipson, C. A. Young, P. D. Yeates, J. C. Masland, S. A. Wartonick, G. T. Harvey, P. H. Read, IEEE J. Lightwave Technol. LT-3, 16 (1985).
[CrossRef]

Toba, H.

H. Toba, K. Inoue, K. Nosu, Electron. Lett. 21, 388 (1985).
[CrossRef]

Tomlinson, W. J.

Wartonick, S. A.

J. Lipson, C. A. Young, P. D. Yeates, J. C. Masland, S. A. Wartonick, G. T. Harvey, P. H. Read, IEEE J. Lightwave Technol. LT-3, 16 (1985).
[CrossRef]

Winzer, G.

G. Winzer, IEEE J. Lightwave Technol. LT-2, 369 (1984).
[CrossRef]

Yeates, P. D.

J. Lipson, C. A. Young, P. D. Yeates, J. C. Masland, S. A. Wartonick, G. T. Harvey, P. H. Read, IEEE J. Lightwave Technol. LT-3, 16 (1985).
[CrossRef]

Young, C. A.

J. Lipson, C. A. Young, P. D. Yeates, J. C. Masland, S. A. Wartonick, G. T. Harvey, P. H. Read, IEEE J. Lightwave Technol. LT-3, 16 (1985).
[CrossRef]

Appl. Opt.

Electron. Lett.

H. Toba, K. Inoue, K. Nosu, Electron. Lett. 21, 388 (1985).
[CrossRef]

IEEE J. Lightwave Technol.

G. Winzer, IEEE J. Lightwave Technol. LT-2, 369 (1984).
[CrossRef]

J. Lipson, C. A. Young, P. D. Yeates, J. C. Masland, S. A. Wartonick, G. T. Harvey, P. H. Read, IEEE J. Lightwave Technol. LT-3, 16 (1985).
[CrossRef]

Other

J. Ng, P. Harvey, B. Moslehi, T. Jannson, in Digest of Optical Society of America Annual Meeting (Optical Society of America, Washington, D.C., 1988), paper MR3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the WDM design composed of a volume holographic grating, a lens (f is the focal length, n is the index of refraction), and a fiber array (b is the fiber spacing). The aspheric lens and the fiber array can be attached to each other with a proper adhesive. The distance S can be adjusted to optimize coupling.

Fig. 2
Fig. 2

Illustration of gratings operating at the Littrow configuration, (a) Surface-relief metallized grating, (b) volume holographic grating, α is the angle of incidence, which is equal to the angle of diffraction β, and Λ is the grating constant.

Fig. 3
Fig. 3

Measured reflection spectral response of a typical volume holographic grating.

Fig. 4
Fig. 4

Measured spectral channel transmission characteristics of a prototype four-channel WDM employing 100/140-μm fibers.

Fig. 5
Fig. 5

Two-window multiplexer design utilizing a volume hologram with two superimposed gratings.

Tables (1)

Tables Icon

Table 1 Ray-Tracing Results for a 12-Channel Multimode (100/140-μm Fibers) WDM System

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

sin α + sin β = λ Λ ,
K λ = d β d λ = 2 tan α λ .
b = f K λ Δ λ .

Metrics