Abstract

Based on the parallel-processing and interconnection capabilities of optics, a novel, compact, real-time programmable parallel optical morphological filter is proposed and demonstrated. Using a real-time polarization-encoded image-casting scheme, some proof-of-principle experimental results are presented.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Serra, Image Analysis and Mathematical Morphology (Academic, New York, 1982).
  2. R. M. Haralik, S. R. Sternberg, X. Zhuang, IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 1228 (1986).
  3. P. Maragos, Opt. Eng. 26, 623 (1987).
  4. K. S. O’Neill, W. T. Rhodes, Proc. Soc. Photo-Opt. Instrum. Eng. 638, 41 (1986).
  5. S. D. Goodman, W. T. Rhodes, Appl. Opt. 27, 1708 (1988).
    [CrossRef] [PubMed]
  6. D. Casasent, E. Botha, Appl. Opt. 27, 3806 (1988).
    [CrossRef] [PubMed]
  7. Y. Ichioka, J. Tanida, Proc. IEEE 72, 787 (1984).
    [CrossRef]
  8. J. Tanida, Y. Ichioka, Appl. Opt. 27, 2926 (1988).
    [CrossRef] [PubMed]
  9. K. S. Huang, B. K. Jenkins, A. A. Sawchuk, in Proceedings of IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Machine Intelligence (Institute of Electrical and Electronics Engineers, New York, 1987), p. 19.
  10. G. Eichmann, C. Lu, J. Zhu, Y. Li, Proc. Soc. Photo-Opt. Instrum. Eng. 974, 30 (1988).
  11. K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, Opt. Eng. 26, 385 (1987).

1988

1987

K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, Opt. Eng. 26, 385 (1987).

P. Maragos, Opt. Eng. 26, 623 (1987).

1986

K. S. O’Neill, W. T. Rhodes, Proc. Soc. Photo-Opt. Instrum. Eng. 638, 41 (1986).

R. M. Haralik, S. R. Sternberg, X. Zhuang, IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 1228 (1986).

1984

Y. Ichioka, J. Tanida, Proc. IEEE 72, 787 (1984).
[CrossRef]

Botha, E.

Casasent, D.

Eichmann, G.

G. Eichmann, C. Lu, J. Zhu, Y. Li, Proc. Soc. Photo-Opt. Instrum. Eng. 974, 30 (1988).

Goodman, S. D.

Handschy, M. A.

K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, Opt. Eng. 26, 385 (1987).

Haralik, R. M.

R. M. Haralik, S. R. Sternberg, X. Zhuang, IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 1228 (1986).

Huang, K. S.

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, in Proceedings of IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Machine Intelligence (Institute of Electrical and Electronics Engineers, New York, 1987), p. 19.

Ichioka, Y.

Jenkins, B. K.

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, in Proceedings of IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Machine Intelligence (Institute of Electrical and Electronics Engineers, New York, 1987), p. 19.

Johnson, K. M.

K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, Opt. Eng. 26, 385 (1987).

Li, Y.

G. Eichmann, C. Lu, J. Zhu, Y. Li, Proc. Soc. Photo-Opt. Instrum. Eng. 974, 30 (1988).

Lu, C.

G. Eichmann, C. Lu, J. Zhu, Y. Li, Proc. Soc. Photo-Opt. Instrum. Eng. 974, 30 (1988).

Maragos, P.

P. Maragos, Opt. Eng. 26, 623 (1987).

O’Neill, K. S.

K. S. O’Neill, W. T. Rhodes, Proc. Soc. Photo-Opt. Instrum. Eng. 638, 41 (1986).

Pagano-Stauffer, L. A.

K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, Opt. Eng. 26, 385 (1987).

Rhodes, W. T.

S. D. Goodman, W. T. Rhodes, Appl. Opt. 27, 1708 (1988).
[CrossRef] [PubMed]

K. S. O’Neill, W. T. Rhodes, Proc. Soc. Photo-Opt. Instrum. Eng. 638, 41 (1986).

Sawchuk, A. A.

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, in Proceedings of IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Machine Intelligence (Institute of Electrical and Electronics Engineers, New York, 1987), p. 19.

Serra, J.

J. Serra, Image Analysis and Mathematical Morphology (Academic, New York, 1982).

Sternberg, S. R.

R. M. Haralik, S. R. Sternberg, X. Zhuang, IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 1228 (1986).

Tanida, J.

Zhu, J.

G. Eichmann, C. Lu, J. Zhu, Y. Li, Proc. Soc. Photo-Opt. Instrum. Eng. 974, 30 (1988).

Zhuang, X.

R. M. Haralik, S. R. Sternberg, X. Zhuang, IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 1228 (1986).

Appl. Opt.

IEEE Trans. Acoust. Speech Signal Process.

R. M. Haralik, S. R. Sternberg, X. Zhuang, IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 1228 (1986).

Opt. Eng.

P. Maragos, Opt. Eng. 26, 623 (1987).

K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, Opt. Eng. 26, 385 (1987).

Proc. IEEE

Y. Ichioka, J. Tanida, Proc. IEEE 72, 787 (1984).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

K. S. O’Neill, W. T. Rhodes, Proc. Soc. Photo-Opt. Instrum. Eng. 638, 41 (1986).

G. Eichmann, C. Lu, J. Zhu, Y. Li, Proc. Soc. Photo-Opt. Instrum. Eng. 974, 30 (1988).

Other

J. Serra, Image Analysis and Mathematical Morphology (Academic, New York, 1982).

K. S. Huang, B. K. Jenkins, A. A. Sawchuk, in Proceedings of IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Machine Intelligence (Institute of Electrical and Electronics Engineers, New York, 1987), p. 19.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic of a programmable optical parallel morphologic image processor. The SLM1 is programmed to select L1 lenslet elements, which serve the role of a structuring element for a morphological operation. The selected L1 elements together with L2 convert the collimated input beam to the various angular projections to be incident upon the image (displayed on SLM2) to be morphologically processed. The overall projections on G represent an analog version of morphological dilation result. For a digital morphological dilation this analog output is thresholded by the video camera (placed after G). When a polarization-encoded image is used, an analyzer A is employed. For an erosion operation an inverted image is created on SLM2. After an identical dilation operation, an additional image inversion is also required.

Fig. 2
Fig. 2

Real-time experimental result of the optical pyramidal closing operation. (a) The input image with two bright objects together with hole and inlet noise elements. (b), (c) The results of dilation using two different structuring elements; in (c) the holes are completely removed. (d) The contrast reversal of (c) as performed by a LCTV. (e), (f) The two dilation results of (e). (g) The final morphological closing result of (a) using a contrast reversal of (f).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

X B = T 1 ( X * B ) ,
X B = T M ( X * B ) ,
X B = T 1 ( X ¯ * B ) ¯ ,
X B = ( X B ) B
X B = ( X B ) B ,
B ( x , y ) = i , j = N / 2 N / 2 b i , j δ ( x i Δ , y j Δ )
Δ = d D 1 f 2 ,
N 1 + f 2 f 1 D 2 D 1 .
I i = I o ( D 2 D 1 ) 2 1 α L α A α SLM 2 ,
M = 2 ( N 1 ) ( 2 N 1 ) .

Metrics