Abstract

We present the measurements of the third-order polarizability (γ) of several platinum poly-ynes obtained using picosecond laser pulses. The real part of γ was measured using the optical Kerr effect with a 1.064-μm pump and a 0.532-μm probe. The imaginary part was evaluated from the two-photon absorption coefficient determined at 0.532 μm. The platinum poly-ynes had low absorption in the visible and the near-infrared wavelengths.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Frazier, S. Guha, W. P. Chen, M. P. Cockerham, P. L. Porter, E. A. Chauchard, C. H. Lee, Polymer 28, 553 (1987).
    [CrossRef]
  2. C. Flytzanis, in Nonlinear Optical Properties of Organic and Polymeric Materials, D. J. Williams, ed., ACS Symposium Series 233 (American Chemical Society, Washington, D.C., 1983), p. 167.
    [CrossRef]
  3. N. Hagihara, K. Sonogashira, K. Takahashi, Adv. Polym. Sci. 41, 149 (1980).
    [CrossRef]
  4. P. P. Ho, R. R. Alfano, Phys. Rev. A 20, 2170 (1979).
    [CrossRef]
  5. J. P. Hermann, J. Ducuing, J. Appl. Phys. 45, 5100 (1974).
    [CrossRef]
  6. J. A. Giordmaine, J. A. Howe, Phys. Rev. Lett. 11, 207 (1963).
    [CrossRef]
  7. W. L. Smith, in CRC Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1986), Vol. III, p. 229.
  8. P. Sperber, A. Penzkofer, Opt. Quantum Electron. 18, 381 (1986).
    [CrossRef]
  9. C. C. Frazier, S. Guha, P. L. Porter, M. P. Cockerham, E. A. Chauchard, Proc. Soc. Photo-Opt. Instrum. Eng. 971, 186 (1988).
  10. J. J. Wynne, G. D. Boyd, Appl. Phys. Lett. 12, 191 (1968).
    [CrossRef]

1988 (1)

C. C. Frazier, S. Guha, P. L. Porter, M. P. Cockerham, E. A. Chauchard, Proc. Soc. Photo-Opt. Instrum. Eng. 971, 186 (1988).

1987 (1)

C. C. Frazier, S. Guha, W. P. Chen, M. P. Cockerham, P. L. Porter, E. A. Chauchard, C. H. Lee, Polymer 28, 553 (1987).
[CrossRef]

1986 (1)

P. Sperber, A. Penzkofer, Opt. Quantum Electron. 18, 381 (1986).
[CrossRef]

1980 (1)

N. Hagihara, K. Sonogashira, K. Takahashi, Adv. Polym. Sci. 41, 149 (1980).
[CrossRef]

1979 (1)

P. P. Ho, R. R. Alfano, Phys. Rev. A 20, 2170 (1979).
[CrossRef]

1974 (1)

J. P. Hermann, J. Ducuing, J. Appl. Phys. 45, 5100 (1974).
[CrossRef]

1968 (1)

J. J. Wynne, G. D. Boyd, Appl. Phys. Lett. 12, 191 (1968).
[CrossRef]

1963 (1)

J. A. Giordmaine, J. A. Howe, Phys. Rev. Lett. 11, 207 (1963).
[CrossRef]

Alfano, R. R.

P. P. Ho, R. R. Alfano, Phys. Rev. A 20, 2170 (1979).
[CrossRef]

Boyd, G. D.

J. J. Wynne, G. D. Boyd, Appl. Phys. Lett. 12, 191 (1968).
[CrossRef]

Chauchard, E. A.

C. C. Frazier, S. Guha, P. L. Porter, M. P. Cockerham, E. A. Chauchard, Proc. Soc. Photo-Opt. Instrum. Eng. 971, 186 (1988).

C. C. Frazier, S. Guha, W. P. Chen, M. P. Cockerham, P. L. Porter, E. A. Chauchard, C. H. Lee, Polymer 28, 553 (1987).
[CrossRef]

Chen, W. P.

C. C. Frazier, S. Guha, W. P. Chen, M. P. Cockerham, P. L. Porter, E. A. Chauchard, C. H. Lee, Polymer 28, 553 (1987).
[CrossRef]

Cockerham, M. P.

C. C. Frazier, S. Guha, P. L. Porter, M. P. Cockerham, E. A. Chauchard, Proc. Soc. Photo-Opt. Instrum. Eng. 971, 186 (1988).

C. C. Frazier, S. Guha, W. P. Chen, M. P. Cockerham, P. L. Porter, E. A. Chauchard, C. H. Lee, Polymer 28, 553 (1987).
[CrossRef]

Ducuing, J.

J. P. Hermann, J. Ducuing, J. Appl. Phys. 45, 5100 (1974).
[CrossRef]

Flytzanis, C.

C. Flytzanis, in Nonlinear Optical Properties of Organic and Polymeric Materials, D. J. Williams, ed., ACS Symposium Series 233 (American Chemical Society, Washington, D.C., 1983), p. 167.
[CrossRef]

Frazier, C. C.

C. C. Frazier, S. Guha, P. L. Porter, M. P. Cockerham, E. A. Chauchard, Proc. Soc. Photo-Opt. Instrum. Eng. 971, 186 (1988).

C. C. Frazier, S. Guha, W. P. Chen, M. P. Cockerham, P. L. Porter, E. A. Chauchard, C. H. Lee, Polymer 28, 553 (1987).
[CrossRef]

Giordmaine, J. A.

J. A. Giordmaine, J. A. Howe, Phys. Rev. Lett. 11, 207 (1963).
[CrossRef]

Guha, S.

C. C. Frazier, S. Guha, P. L. Porter, M. P. Cockerham, E. A. Chauchard, Proc. Soc. Photo-Opt. Instrum. Eng. 971, 186 (1988).

C. C. Frazier, S. Guha, W. P. Chen, M. P. Cockerham, P. L. Porter, E. A. Chauchard, C. H. Lee, Polymer 28, 553 (1987).
[CrossRef]

Hagihara, N.

N. Hagihara, K. Sonogashira, K. Takahashi, Adv. Polym. Sci. 41, 149 (1980).
[CrossRef]

Hermann, J. P.

J. P. Hermann, J. Ducuing, J. Appl. Phys. 45, 5100 (1974).
[CrossRef]

Ho, P. P.

P. P. Ho, R. R. Alfano, Phys. Rev. A 20, 2170 (1979).
[CrossRef]

Howe, J. A.

J. A. Giordmaine, J. A. Howe, Phys. Rev. Lett. 11, 207 (1963).
[CrossRef]

Lee, C. H.

C. C. Frazier, S. Guha, W. P. Chen, M. P. Cockerham, P. L. Porter, E. A. Chauchard, C. H. Lee, Polymer 28, 553 (1987).
[CrossRef]

Penzkofer, A.

P. Sperber, A. Penzkofer, Opt. Quantum Electron. 18, 381 (1986).
[CrossRef]

Porter, P. L.

C. C. Frazier, S. Guha, P. L. Porter, M. P. Cockerham, E. A. Chauchard, Proc. Soc. Photo-Opt. Instrum. Eng. 971, 186 (1988).

C. C. Frazier, S. Guha, W. P. Chen, M. P. Cockerham, P. L. Porter, E. A. Chauchard, C. H. Lee, Polymer 28, 553 (1987).
[CrossRef]

Smith, W. L.

W. L. Smith, in CRC Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1986), Vol. III, p. 229.

Sonogashira, K.

N. Hagihara, K. Sonogashira, K. Takahashi, Adv. Polym. Sci. 41, 149 (1980).
[CrossRef]

Sperber, P.

P. Sperber, A. Penzkofer, Opt. Quantum Electron. 18, 381 (1986).
[CrossRef]

Takahashi, K.

N. Hagihara, K. Sonogashira, K. Takahashi, Adv. Polym. Sci. 41, 149 (1980).
[CrossRef]

Wynne, J. J.

J. J. Wynne, G. D. Boyd, Appl. Phys. Lett. 12, 191 (1968).
[CrossRef]

Adv. Polym. Sci. (1)

N. Hagihara, K. Sonogashira, K. Takahashi, Adv. Polym. Sci. 41, 149 (1980).
[CrossRef]

Appl. Phys. Lett. (1)

J. J. Wynne, G. D. Boyd, Appl. Phys. Lett. 12, 191 (1968).
[CrossRef]

J. Appl. Phys. (1)

J. P. Hermann, J. Ducuing, J. Appl. Phys. 45, 5100 (1974).
[CrossRef]

Opt. Quantum Electron. (1)

P. Sperber, A. Penzkofer, Opt. Quantum Electron. 18, 381 (1986).
[CrossRef]

Phys. Rev. A (1)

P. P. Ho, R. R. Alfano, Phys. Rev. A 20, 2170 (1979).
[CrossRef]

Phys. Rev. Lett. (1)

J. A. Giordmaine, J. A. Howe, Phys. Rev. Lett. 11, 207 (1963).
[CrossRef]

Polymer (1)

C. C. Frazier, S. Guha, W. P. Chen, M. P. Cockerham, P. L. Porter, E. A. Chauchard, C. H. Lee, Polymer 28, 553 (1987).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

C. C. Frazier, S. Guha, P. L. Porter, M. P. Cockerham, E. A. Chauchard, Proc. Soc. Photo-Opt. Instrum. Eng. 971, 186 (1988).

Other (2)

W. L. Smith, in CRC Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1986), Vol. III, p. 229.

C. Flytzanis, in Nonlinear Optical Properties of Organic and Polymeric Materials, D. J. Williams, ed., ACS Symposium Series 233 (American Chemical Society, Washington, D.C., 1983), p. 167.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Platinum poly-ynes, with the sample number given at left. Sample 1: chain length (n), 112; polymer concentration (Np), 3.4 × 1019 molecules/cc in THF; and absorption coefficient (α), 0.65 cm−1. Sample 2: n >144, Np = 2.4 × 1019, and α = 0.45. Sample 3: n = 26, Np = 7.2 × 1019, and α = 0.15. Sample4: n = 52, Np = 6.1 × 1019, and α = 0.70.

Fig. 2
Fig. 2

Absorption spectrum of sample 4 diluted to 8.85 × 10−6 M.

Fig. 3
Fig. 3

Experimental setup for measuring the optical Kerr effect.

Fig. 4
Fig. 4

Optical Kerr effect signal versus the probe delay for a solution of the polymer [Pt(PBu3)2–DEX)2]n in THF (sample 4).

Fig. 5
Fig. 5

Normalized inverse transmission versus the incident laser intensity for a solution of the polymer [Pt(PBu3)2–(DEB)2]n in THF (sample 2).

Tables (2)

Tables Icon

Table 1 Comparison of the Hyperpolarizabilities of Common Laboratory Liquids

Tables Icon

Table 2 Values of the Nonlinear-Optical Coefficients of the Platinum Poly-ynes

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( solution ) / n 2 ( solvent ) = 1 + N p γ p / N s γ s = { exp ( αl ) [ D ( solution ) / D ( solvent ) ] } 1 / 2 ,
T NL = [ 2 / ( Q π ) ] 0 ln [ 1 + Q exp ( x 2 ) ] d x ,

Metrics