Abstract

The ratio of the imaginary part to the real part of the complex nonlinear refractive index has been measured by transient two-wave mixing in acridine-orange-doped fluorophosphate glass, fluorescein-doped boric-acid glass, and ruby at argon-ion wavelengths. The method enables the individual signs of the components of the nonlinear index to be obtained. A simple theory based on a single homogeneously broadened absorption from the ground state agrees with measurements of the phase of the nonlinear index in acridine but not in fluorescein, where our data suggest that excited-state absorption plays an important role.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Kramer, W. R. Tompkin, R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
    [CrossRef] [PubMed]
  2. W. R. Tompkin, R. W. Boyd, D. W. Hall, P. A. Tick, J. Opt. Soc. Am. B 4, 1030 (1987).
    [CrossRef]
  3. S. A. Boothroyd, J. Chrostowski, M. S. O’Sullivan, J. Opt. Soc. Am. B 6, 766 (1989).
    [CrossRef]
  4. I. McMichael, P. Yeh, P. Beckwith, Opt. Lett. 13, 500 (1988).
    [CrossRef] [PubMed]
  5. T. Catunda, J. P. Andreeta, J. C. Castro, Appl. Opt. 25, 2391 (1986).
    [CrossRef] [PubMed]
  6. S. M. Saltiel, B. Van Wonterghem, P. M. Rentzepis, Opt. Lett. 14, 183 (1989).
    [CrossRef] [PubMed]
  7. Y. Silberberg, I. Bar-Joseph, J. Opt. Soc. Am. B 1, 662 (1984).
    [CrossRef]
  8. P. F. Liao, D. M. Bloom, Opt. Lett. 3, 4 (1978).
    [CrossRef] [PubMed]
  9. T. Catunda, J. C. Castro, Opt. Commun. 63, 185 (1987).
    [CrossRef]
  10. I. McMichael, P. Yeh, M. Khoshnevisan, Proc. Soc. Photo-Opt. Instrum. Eng. 613, 32 (1986).
  11. N. A. Vainos, J. A. Khoury, R. W. Eason, Opt. Lett. 13, 503 (1988).
    [CrossRef] [PubMed]

1989 (2)

1988 (2)

1987 (2)

1986 (3)

M. A. Kramer, W. R. Tompkin, R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

I. McMichael, P. Yeh, M. Khoshnevisan, Proc. Soc. Photo-Opt. Instrum. Eng. 613, 32 (1986).

T. Catunda, J. P. Andreeta, J. C. Castro, Appl. Opt. 25, 2391 (1986).
[CrossRef] [PubMed]

1984 (1)

1978 (1)

Andreeta, J. P.

Bar-Joseph, I.

Beckwith, P.

Bloom, D. M.

Boothroyd, S. A.

Boyd, R. W.

Castro, J. C.

Catunda, T.

Chrostowski, J.

Eason, R. W.

Hall, D. W.

Khoshnevisan, M.

I. McMichael, P. Yeh, M. Khoshnevisan, Proc. Soc. Photo-Opt. Instrum. Eng. 613, 32 (1986).

Khoury, J. A.

Kramer, M. A.

M. A. Kramer, W. R. Tompkin, R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

Liao, P. F.

McMichael, I.

I. McMichael, P. Yeh, P. Beckwith, Opt. Lett. 13, 500 (1988).
[CrossRef] [PubMed]

I. McMichael, P. Yeh, M. Khoshnevisan, Proc. Soc. Photo-Opt. Instrum. Eng. 613, 32 (1986).

O’Sullivan, M. S.

Rentzepis, P. M.

Saltiel, S. M.

Silberberg, Y.

Tick, P. A.

Tompkin, W. R.

Vainos, N. A.

Van Wonterghem, B.

Yeh, P.

I. McMichael, P. Yeh, P. Beckwith, Opt. Lett. 13, 500 (1988).
[CrossRef] [PubMed]

I. McMichael, P. Yeh, M. Khoshnevisan, Proc. Soc. Photo-Opt. Instrum. Eng. 613, 32 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

TWM transmitted probe-beam intensity recorded as the phase of the incident probe beam was changed relative to the grating from 0 to approximately −3π. Curve (a), acridine orange at 496.5 nm; curve (b), ruby at 514.5 nm; curve (c), fluorescein at 476.5 nm.

Fig. 2
Fig. 2

Measured nonlinear refractive-index ratios versus the normalized wavelength detuning from the line center absorption for acridine orange (•) and fluorescein (▲). The solid curves are n2″/n2′ = 1/ξ.

Tables (1)

Tables Icon

Table 1 Ratios of the Imaginary Part to the Real Part of the Complex Nonlinear Refractive Index for Acridine-Orange-Doped and Fluorescein-Dye-Doped Glass

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d A 1 d z = ik n 2 [ ( A 2 A 2 + A 1 A 1 ) A 1 + A 2 A 2 A 1 ] α 2 A 1 ,
A 1 ( L ) A 1 ( 0 ) ( exp αL 2 ) × [ 1 + 2 Lk | n 2 | A 2 A 2 exp i ( ϕ π 2 ) ] ,
I 1 ( L ) I 1 ( 0 ) ( exp αL ) × { 1 + 4 L 2 k 2 | n 2 | 2 I 2 2 4 Lk | n 2 | I 2 sin [ δ ( t ) ϕ ] } ,

Metrics