Abstract

Arrays of both annular and square annular slots in a conducting sheet on a dielectric substrate have been fabricated photolithographically. The structures are shown to behave as bandpass filters in the far infrared, with a resonant wavelength slightly larger than the average circumference or perimeter of the slot. The measured far-infrared transmittance of the annular array is approximately 76% of that predicted by theory, while its resonant frequency agrees with theory to within 5%.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Parker, S. M. A. Hamdy, Electron. Lett. 17, 613 (1981).
  2. K. J. Kogler, R. G. Pastor, Appl. Opt. 27, 18 (1988).
    [CrossRef] [PubMed]
  3. E. A. Parker, S. M. A. Hamdy, R. J. Langley, Electron. Lett. 17, 880 (1981).
    [CrossRef]
  4. R. C. Compton, R. C. McPhedran, G. H. Derrick, L. C. Botten, Infrared Phys. 23, 239 (1983).
    [CrossRef]
  5. A. Roberts, R. C. McPhedran, IEEE Trans. Antennas Propag. AP-36, 607 (1988).
    [CrossRef]
  6. The quartz disks with custom FIR antireflection coatings were supplied by Francis Lord Manufacturing (33 Higginbotham Road, Gladesville, N.S.W. 2111, Australia).

1988

A. Roberts, R. C. McPhedran, IEEE Trans. Antennas Propag. AP-36, 607 (1988).
[CrossRef]

K. J. Kogler, R. G. Pastor, Appl. Opt. 27, 18 (1988).
[CrossRef] [PubMed]

1983

R. C. Compton, R. C. McPhedran, G. H. Derrick, L. C. Botten, Infrared Phys. 23, 239 (1983).
[CrossRef]

1981

E. A. Parker, S. M. A. Hamdy, Electron. Lett. 17, 613 (1981).

E. A. Parker, S. M. A. Hamdy, R. J. Langley, Electron. Lett. 17, 880 (1981).
[CrossRef]

Botten, L. C.

R. C. Compton, R. C. McPhedran, G. H. Derrick, L. C. Botten, Infrared Phys. 23, 239 (1983).
[CrossRef]

Compton, R. C.

R. C. Compton, R. C. McPhedran, G. H. Derrick, L. C. Botten, Infrared Phys. 23, 239 (1983).
[CrossRef]

Derrick, G. H.

R. C. Compton, R. C. McPhedran, G. H. Derrick, L. C. Botten, Infrared Phys. 23, 239 (1983).
[CrossRef]

Hamdy, S. M. A.

E. A. Parker, S. M. A. Hamdy, R. J. Langley, Electron. Lett. 17, 880 (1981).
[CrossRef]

E. A. Parker, S. M. A. Hamdy, Electron. Lett. 17, 613 (1981).

Kogler, K. J.

Langley, R. J.

E. A. Parker, S. M. A. Hamdy, R. J. Langley, Electron. Lett. 17, 880 (1981).
[CrossRef]

McPhedran, R. C.

A. Roberts, R. C. McPhedran, IEEE Trans. Antennas Propag. AP-36, 607 (1988).
[CrossRef]

R. C. Compton, R. C. McPhedran, G. H. Derrick, L. C. Botten, Infrared Phys. 23, 239 (1983).
[CrossRef]

Parker, E. A.

E. A. Parker, S. M. A. Hamdy, R. J. Langley, Electron. Lett. 17, 880 (1981).
[CrossRef]

E. A. Parker, S. M. A. Hamdy, Electron. Lett. 17, 613 (1981).

Pastor, R. G.

Roberts, A.

A. Roberts, R. C. McPhedran, IEEE Trans. Antennas Propag. AP-36, 607 (1988).
[CrossRef]

Appl. Opt.

Electron. Lett.

E. A. Parker, S. M. A. Hamdy, Electron. Lett. 17, 613 (1981).

E. A. Parker, S. M. A. Hamdy, R. J. Langley, Electron. Lett. 17, 880 (1981).
[CrossRef]

IEEE Trans. Antennas Propag.

A. Roberts, R. C. McPhedran, IEEE Trans. Antennas Propag. AP-36, 607 (1988).
[CrossRef]

Infrared Phys.

R. C. Compton, R. C. McPhedran, G. H. Derrick, L. C. Botten, Infrared Phys. 23, 239 (1983).
[CrossRef]

Other

The quartz disks with custom FIR antireflection coatings were supplied by Francis Lord Manufacturing (33 Higginbotham Road, Gladesville, N.S.W. 2111, Australia).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Geometry of the periodic slot arrays. (a) The annular-slot array as fabricated, with r = 70.5 μm, w = 4.0 μm, and d = 160 μm. The aluminum thickness is 1.2 μm, and the average slot circumference is 433μm. (b) The square-annular-slot array as fabricated, with l = 110 μm, w = 4.6 μm, and d = 160 μm. The aluminum thickness is 0.7 μm, and the average slot perimeter is 433 μm

Fig. 2
Fig. 2

Electron micrographs of the periodic slot arrays taken at ~45° elevation. (a) Annular slots. Note that imperfect lift-off can result in rough edges or even bridged slots, as shown at the lower right. (b) The corner of a square annular slot.

Fig. 3
Fig. 3

Transmission spectra of periodic slot arrays. (a) The annular-slot array; the solid curve is the measured spectrum. The periodic modulation results from interference effects in the quartz substrate. The dashed curve is the calculated spectrum. (b) The square-annular-slot array. For the measured spectra the frequency resolution is 5 GHz and the estimated uncertainty in transmittance is 1%.

Metrics