Abstract

The phase-front quality of the primary spatial lobe emitted from an injection-locked gain-guided AlGaAs laser-diode array is measured by using an equal-path, phase-shifting Mach–Zehnder interferometer. Root-mean-square phase errors of 0.037 ± 0.003 wave (λ/27) are measured for the single spatial lobe, which contained 240-mW cw output power in a single longitudinal mode. This phase-front quality corresponds to a Strehl ratio of S = 0.947, which results in a 0.23-dB power loss from the single lobe’s ideal diffraction-limited power. These values are comparable with those measured for single-stripe index-guided AlGaAs lasers.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Goldberg, H. F. Taylor, J. F. Weller, Appl. Phys. Lett. 46, 236 (1985).
    [CrossRef]
  2. J. P. Hohimer, A. Owyoung, G. R. Hadley, Appl. Phys. Lett. 47, 1244 (1985).
    [CrossRef]
  3. L. Goldberg, J. F. Weller, Electron. Lett. 22, 858 (1986).
    [CrossRef]
  4. G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, IEEE J. Quantum. Electron. QE-24, 609 (1988).
    [CrossRef]
  5. J. Hayes, S. R. Lange, Proc. Soc. Photo-Opt. Instrum. Eng. 429, 22 (1983).
  6. K. M. Leung, S. R. Lange, Proc. Soc. Photo-Opt. Instrum. Eng. 429, 27 (1983).
  7. N. W. Carlson, V. J. Masin, IEEE J. Lightwave Technol. LT-6, 413 (1988).
    [CrossRef]
  8. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).
  9. N. W. Carlson, V. J. Masin, IEEE J. Quantum Electron. QE-22, 2079 (1986).
    [CrossRef]

1988

G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, IEEE J. Quantum. Electron. QE-24, 609 (1988).
[CrossRef]

N. W. Carlson, V. J. Masin, IEEE J. Lightwave Technol. LT-6, 413 (1988).
[CrossRef]

1986

N. W. Carlson, V. J. Masin, IEEE J. Quantum Electron. QE-22, 2079 (1986).
[CrossRef]

L. Goldberg, J. F. Weller, Electron. Lett. 22, 858 (1986).
[CrossRef]

1985

L. Goldberg, H. F. Taylor, J. F. Weller, Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

J. P. Hohimer, A. Owyoung, G. R. Hadley, Appl. Phys. Lett. 47, 1244 (1985).
[CrossRef]

1983

J. Hayes, S. R. Lange, Proc. Soc. Photo-Opt. Instrum. Eng. 429, 22 (1983).

K. M. Leung, S. R. Lange, Proc. Soc. Photo-Opt. Instrum. Eng. 429, 27 (1983).

Abbas, G. L.

G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, IEEE J. Quantum. Electron. QE-24, 609 (1988).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).

Carlson, N. W.

N. W. Carlson, V. J. Masin, IEEE J. Lightwave Technol. LT-6, 413 (1988).
[CrossRef]

N. W. Carlson, V. J. Masin, IEEE J. Quantum Electron. QE-22, 2079 (1986).
[CrossRef]

Chan, V. W. S.

G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, IEEE J. Quantum. Electron. QE-24, 609 (1988).
[CrossRef]

Fujimoto, J. G.

G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, IEEE J. Quantum. Electron. QE-24, 609 (1988).
[CrossRef]

Goldberg, L.

L. Goldberg, J. F. Weller, Electron. Lett. 22, 858 (1986).
[CrossRef]

L. Goldberg, H. F. Taylor, J. F. Weller, Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

Hadley, G. R.

J. P. Hohimer, A. Owyoung, G. R. Hadley, Appl. Phys. Lett. 47, 1244 (1985).
[CrossRef]

Hayes, J.

J. Hayes, S. R. Lange, Proc. Soc. Photo-Opt. Instrum. Eng. 429, 22 (1983).

Hohimer, J. P.

J. P. Hohimer, A. Owyoung, G. R. Hadley, Appl. Phys. Lett. 47, 1244 (1985).
[CrossRef]

Lange, S. R.

J. Hayes, S. R. Lange, Proc. Soc. Photo-Opt. Instrum. Eng. 429, 22 (1983).

K. M. Leung, S. R. Lange, Proc. Soc. Photo-Opt. Instrum. Eng. 429, 27 (1983).

Leung, K. M.

K. M. Leung, S. R. Lange, Proc. Soc. Photo-Opt. Instrum. Eng. 429, 27 (1983).

Masin, V. J.

N. W. Carlson, V. J. Masin, IEEE J. Lightwave Technol. LT-6, 413 (1988).
[CrossRef]

N. W. Carlson, V. J. Masin, IEEE J. Quantum Electron. QE-22, 2079 (1986).
[CrossRef]

Owyoung, A.

J. P. Hohimer, A. Owyoung, G. R. Hadley, Appl. Phys. Lett. 47, 1244 (1985).
[CrossRef]

Taylor, H. F.

L. Goldberg, H. F. Taylor, J. F. Weller, Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

Weller, J. F.

L. Goldberg, J. F. Weller, Electron. Lett. 22, 858 (1986).
[CrossRef]

L. Goldberg, H. F. Taylor, J. F. Weller, Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).

Yang, S.

G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, IEEE J. Quantum. Electron. QE-24, 609 (1988).
[CrossRef]

Appl. Phys. Lett.

L. Goldberg, H. F. Taylor, J. F. Weller, Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

J. P. Hohimer, A. Owyoung, G. R. Hadley, Appl. Phys. Lett. 47, 1244 (1985).
[CrossRef]

Electron. Lett.

L. Goldberg, J. F. Weller, Electron. Lett. 22, 858 (1986).
[CrossRef]

IEEE J. Lightwave Technol.

N. W. Carlson, V. J. Masin, IEEE J. Lightwave Technol. LT-6, 413 (1988).
[CrossRef]

IEEE J. Quantum Electron.

N. W. Carlson, V. J. Masin, IEEE J. Quantum Electron. QE-22, 2079 (1986).
[CrossRef]

IEEE J. Quantum. Electron.

G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, IEEE J. Quantum. Electron. QE-24, 609 (1988).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

J. Hayes, S. R. Lange, Proc. Soc. Photo-Opt. Instrum. Eng. 429, 22 (1983).

K. M. Leung, S. R. Lange, Proc. Soc. Photo-Opt. Instrum. Eng. 429, 27 (1983).

Other

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Plot of the Strehl intensity and the power loss in the primary lobe of the far field versus the random rms phase error.

Fig. 2
Fig. 2

Schematic of the optical configuration for injection locking of the gain-guided laser array and subsequent rms phase-error measurements.

Fig. 3
Fig. 3

Far-field pattern of injection-locked 10-element gain-guided array biased cw at I = 4.05Ith. The single lobe contains 77% (P = 240 mW) of the total array power. FWHM = 0.5°, 2.5° off axis. The injected power is 6.8 mW.

Fig. 4
Fig. 4

(a) Three-dimensional phase aberration plot for the collimated beam of the injection-locked gain-guided laser array at P = 240 mW (conditions as in Fig. 3). The x axis is parallel to the plane of the array, and the Φ direction is the magnitude of the phase. The rms phase error and the peak-to-valley (P–V) phase aberration are given in waves, (b) The calculated far-field pattern corresponding to the collimated phase front shown in (a).The central lobe contains 77% of the total beam power, with the remaining 23% diffracted into the side lobes. This result agrees well with the calculated Strehl ratio of S = 0.947.

Fig. 5
Fig. 5

Three-dimensional phase aberration plot for the collimated beam of a single-stripe index-guided laser diode operating at 15 mW. The axes of this plot are the same as those in Fig. 4(a), except that the phase scaling is larger. Note that the peak-to-valley (P–V) phase aberration for this laser is larger.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S I ( 0 ° ) I dl ( 0 ° ) = exp [ ( 2 π Φ rms / λ ) 2 ] ,

Metrics