Abstract

We have observed waveguiding in thin films of polymer gelatin on GaAs, LiNbO3, glass, and aluminum substrates. A graded-index profile can be induced in the gelatin layer and tuned by wet processing. This makes it possible to form waveguides on any smooth surface. Locally sensitizing the gelatin waveguide with ammonium dichromate allows us to integrate single and multiplexed gratings on the same substrate to perform various functions for optical interconnects and signal processing. A waveguide grating coupler that converts free-space TEM00 laser light to a two-dimensional spherical guided wave with 50° angle of divergence has also been demonstrated. An optical clock distribution network on wafer-scale integrated circuits is feasible with this new technology.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Chen, C. S. Tsai, Opt. Lett. 11, 546 (1986).
    [CrossRef] [PubMed]
  2. R. T. Chen, C. S. Tsai, IEEE J. Quantum Electron. QE-22, 880 (1986).
    [CrossRef]
  3. O. Eknoyan, C. H. Bulmer, H. F. Taylor, W. K. Burns, A. S. Greenblatt, L. A. Beach, R. R. Neurgaonkar, Appl. Phys. Lett. 48, 13 (1986).
    [CrossRef]
  4. T. Jannson, J. Jannson, Proc. Soc. Photo-Opt. Instrum. Eng. 833, 84 (1988).
  5. A. Chang, C. D. Leonard, Appl. Opt. 18, 2407 (1979).
    [CrossRef] [PubMed]
  6. B. Duncan, J. A. Mcquoid, D. J. McCartney, Opt. Eng. 24, 781 (1985).
  7. C. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1975), pp. 267–280.
  8. D. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
    [CrossRef]
  9. E. White, P. F. Heidrich, Appl. Opt. 15, 151 (1976).
    [CrossRef] [PubMed]
  10. D. Meyerhofer, in Holographic Recording Materials, H. M. Smith, ed., Vol. 20 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), Chap. 3.
    [CrossRef]
  11. R. T. Chen, W. S. C. Chang, IEEE J. Quantum Electron. QE-22, 880 (1986).
    [CrossRef]
  12. T. Jannson, G. Savant, Y. Qiao, Annual Report, no. FG03-86ER13600 (U.S. Department of Energy, Washington, D.C., 1988).
  13. A. Yariv, IEEE J. Quantum Electron. QE-9, 919 (1973).
    [CrossRef]

1988 (1)

T. Jannson, J. Jannson, Proc. Soc. Photo-Opt. Instrum. Eng. 833, 84 (1988).

1986 (4)

R. T. Chen, C. S. Tsai, Opt. Lett. 11, 546 (1986).
[CrossRef] [PubMed]

R. T. Chen, C. S. Tsai, IEEE J. Quantum Electron. QE-22, 880 (1986).
[CrossRef]

O. Eknoyan, C. H. Bulmer, H. F. Taylor, W. K. Burns, A. S. Greenblatt, L. A. Beach, R. R. Neurgaonkar, Appl. Phys. Lett. 48, 13 (1986).
[CrossRef]

R. T. Chen, W. S. C. Chang, IEEE J. Quantum Electron. QE-22, 880 (1986).
[CrossRef]

1985 (1)

B. Duncan, J. A. Mcquoid, D. J. McCartney, Opt. Eng. 24, 781 (1985).

1979 (1)

1976 (1)

1973 (1)

A. Yariv, IEEE J. Quantum Electron. QE-9, 919 (1973).
[CrossRef]

1969 (1)

D. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Beach, L. A.

O. Eknoyan, C. H. Bulmer, H. F. Taylor, W. K. Burns, A. S. Greenblatt, L. A. Beach, R. R. Neurgaonkar, Appl. Phys. Lett. 48, 13 (1986).
[CrossRef]

Bulmer, C. H.

O. Eknoyan, C. H. Bulmer, H. F. Taylor, W. K. Burns, A. S. Greenblatt, L. A. Beach, R. R. Neurgaonkar, Appl. Phys. Lett. 48, 13 (1986).
[CrossRef]

Burns, W. K.

O. Eknoyan, C. H. Bulmer, H. F. Taylor, W. K. Burns, A. S. Greenblatt, L. A. Beach, R. R. Neurgaonkar, Appl. Phys. Lett. 48, 13 (1986).
[CrossRef]

Chang, A.

Chang, W. S. C.

R. T. Chen, W. S. C. Chang, IEEE J. Quantum Electron. QE-22, 880 (1986).
[CrossRef]

Chen, R. T.

R. T. Chen, W. S. C. Chang, IEEE J. Quantum Electron. QE-22, 880 (1986).
[CrossRef]

R. T. Chen, C. S. Tsai, Opt. Lett. 11, 546 (1986).
[CrossRef] [PubMed]

R. T. Chen, C. S. Tsai, IEEE J. Quantum Electron. QE-22, 880 (1986).
[CrossRef]

Duncan, B.

B. Duncan, J. A. Mcquoid, D. J. McCartney, Opt. Eng. 24, 781 (1985).

Eknoyan, O.

O. Eknoyan, C. H. Bulmer, H. F. Taylor, W. K. Burns, A. S. Greenblatt, L. A. Beach, R. R. Neurgaonkar, Appl. Phys. Lett. 48, 13 (1986).
[CrossRef]

Greenblatt, A. S.

O. Eknoyan, C. H. Bulmer, H. F. Taylor, W. K. Burns, A. S. Greenblatt, L. A. Beach, R. R. Neurgaonkar, Appl. Phys. Lett. 48, 13 (1986).
[CrossRef]

Heidrich, P. F.

Jannson, J.

T. Jannson, J. Jannson, Proc. Soc. Photo-Opt. Instrum. Eng. 833, 84 (1988).

Jannson, T.

T. Jannson, J. Jannson, Proc. Soc. Photo-Opt. Instrum. Eng. 833, 84 (1988).

T. Jannson, G. Savant, Y. Qiao, Annual Report, no. FG03-86ER13600 (U.S. Department of Energy, Washington, D.C., 1988).

Leonard, C. D.

Martin, R. J.

D. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

McCartney, D. J.

B. Duncan, J. A. Mcquoid, D. J. McCartney, Opt. Eng. 24, 781 (1985).

Mcquoid, J. A.

B. Duncan, J. A. Mcquoid, D. J. McCartney, Opt. Eng. 24, 781 (1985).

Meyerhofer, D.

D. Meyerhofer, in Holographic Recording Materials, H. M. Smith, ed., Vol. 20 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), Chap. 3.
[CrossRef]

Neurgaonkar, R. R.

O. Eknoyan, C. H. Bulmer, H. F. Taylor, W. K. Burns, A. S. Greenblatt, L. A. Beach, R. R. Neurgaonkar, Appl. Phys. Lett. 48, 13 (1986).
[CrossRef]

Qiao, Y.

T. Jannson, G. Savant, Y. Qiao, Annual Report, no. FG03-86ER13600 (U.S. Department of Energy, Washington, D.C., 1988).

Savant, G.

T. Jannson, G. Savant, Y. Qiao, Annual Report, no. FG03-86ER13600 (U.S. Department of Energy, Washington, D.C., 1988).

Schiff, C.

C. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1975), pp. 267–280.

Taylor, H. F.

O. Eknoyan, C. H. Bulmer, H. F. Taylor, W. K. Burns, A. S. Greenblatt, L. A. Beach, R. R. Neurgaonkar, Appl. Phys. Lett. 48, 13 (1986).
[CrossRef]

Tien, D.

D. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Tsai, C. S.

R. T. Chen, C. S. Tsai, IEEE J. Quantum Electron. QE-22, 880 (1986).
[CrossRef]

R. T. Chen, C. S. Tsai, Opt. Lett. 11, 546 (1986).
[CrossRef] [PubMed]

Ulrich, R.

D. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

White, E.

Yariv, A.

A. Yariv, IEEE J. Quantum Electron. QE-9, 919 (1973).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

O. Eknoyan, C. H. Bulmer, H. F. Taylor, W. K. Burns, A. S. Greenblatt, L. A. Beach, R. R. Neurgaonkar, Appl. Phys. Lett. 48, 13 (1986).
[CrossRef]

D. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

IEEE J. Quantum Electron. (3)

A. Yariv, IEEE J. Quantum Electron. QE-9, 919 (1973).
[CrossRef]

R. T. Chen, W. S. C. Chang, IEEE J. Quantum Electron. QE-22, 880 (1986).
[CrossRef]

R. T. Chen, C. S. Tsai, IEEE J. Quantum Electron. QE-22, 880 (1986).
[CrossRef]

Opt. Eng. (1)

B. Duncan, J. A. Mcquoid, D. J. McCartney, Opt. Eng. 24, 781 (1985).

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

T. Jannson, J. Jannson, Proc. Soc. Photo-Opt. Instrum. Eng. 833, 84 (1988).

Other (3)

C. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1975), pp. 267–280.

D. Meyerhofer, in Holographic Recording Materials, H. M. Smith, ed., Vol. 20 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), Chap. 3.
[CrossRef]

T. Jannson, G. Savant, Y. Qiao, Annual Report, no. FG03-86ER13600 (U.S. Department of Energy, Washington, D.C., 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Index profile of gelatin waveguide D1. Curve A, before wet processing; curve B, after wet processing.

Fig. 2
Fig. 2

Refractive indices of gelatin layer at 632.8 nm as a function of gelatin weight in 100 cm3 of water solution before wet processing.

Fig. 3
Fig. 3

Waveguiding phenomenon in gelatin films on (a) glass, (b) LiNbO3, (c) GaAs, and (d) aluminum substrates.

Fig. 4
Fig. 4

General shape of the gelatin index distribution after wet processing.

Fig. 5
Fig. 5

Coupling of 488-nm TEM00 free-space laser radiation into a two-dimensional spherical wave with a 50° beam divergence in a gelatin waveguide. (a) Cross section of the device, (b) real photograph of the grating coupler.

Metrics