Abstract

Mode conversion in optically active slab waveguides is studied both theoretically and experimentally. The waveguide is fabricated by homogeneously embedding isotropic and randomly oriented optical active material into a passive polymeric waveguide. The polarization rotation is measured for several configurations of a slab waveguide.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, e.g., D. L. Jaggard, X. Sun, N. Engheta, IEEE Trans. Antennas Propag. AP-36, 1007 (1988).
    [Crossref]
  2. S. Wang, M. Shah, J. Crow, J. Appl. Phys. 43, 1861 (1972).
    [Crossref]
  3. S. Yamamoto, Y. Koyamada, T. Makimoto, J. Appl. Phys. 43, 5090 (1972).
    [Crossref]
  4. M. Matyas, V. Capek, J. Opt. Soc Am. A 5, 1901 (1988).
    [Crossref]
  5. N. Engheta, P. Pelet, Opt. Lett. 14, 593 (1989).
    [Crossref] [PubMed]
  6. F. B. Hildebrand, Advanced Calculus for Applications, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1976), p. 52.
  7. Specific rotation is defined as the rotation, α, per unit length L (in decimeters) and per unit pure-density liquid, d. Therefore [α] = α/(Ld). For solutions, it is defined as per 100 ml of solute, c. In that case, [α] = α · 100/(Lc).
  8. R. H. Martin, M. Marchant, M. Baes, Helv. Chim. Acta 54, 358 (1971).
    [Crossref]

1989 (1)

1988 (2)

See, e.g., D. L. Jaggard, X. Sun, N. Engheta, IEEE Trans. Antennas Propag. AP-36, 1007 (1988).
[Crossref]

M. Matyas, V. Capek, J. Opt. Soc Am. A 5, 1901 (1988).
[Crossref]

1972 (2)

S. Wang, M. Shah, J. Crow, J. Appl. Phys. 43, 1861 (1972).
[Crossref]

S. Yamamoto, Y. Koyamada, T. Makimoto, J. Appl. Phys. 43, 5090 (1972).
[Crossref]

1971 (1)

R. H. Martin, M. Marchant, M. Baes, Helv. Chim. Acta 54, 358 (1971).
[Crossref]

Baes, M.

R. H. Martin, M. Marchant, M. Baes, Helv. Chim. Acta 54, 358 (1971).
[Crossref]

Capek, V.

M. Matyas, V. Capek, J. Opt. Soc Am. A 5, 1901 (1988).
[Crossref]

Crow, J.

S. Wang, M. Shah, J. Crow, J. Appl. Phys. 43, 1861 (1972).
[Crossref]

Engheta, N.

N. Engheta, P. Pelet, Opt. Lett. 14, 593 (1989).
[Crossref] [PubMed]

See, e.g., D. L. Jaggard, X. Sun, N. Engheta, IEEE Trans. Antennas Propag. AP-36, 1007 (1988).
[Crossref]

Hildebrand, F. B.

F. B. Hildebrand, Advanced Calculus for Applications, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1976), p. 52.

Jaggard, D. L.

See, e.g., D. L. Jaggard, X. Sun, N. Engheta, IEEE Trans. Antennas Propag. AP-36, 1007 (1988).
[Crossref]

Koyamada, Y.

S. Yamamoto, Y. Koyamada, T. Makimoto, J. Appl. Phys. 43, 5090 (1972).
[Crossref]

Makimoto, T.

S. Yamamoto, Y. Koyamada, T. Makimoto, J. Appl. Phys. 43, 5090 (1972).
[Crossref]

Marchant, M.

R. H. Martin, M. Marchant, M. Baes, Helv. Chim. Acta 54, 358 (1971).
[Crossref]

Martin, R. H.

R. H. Martin, M. Marchant, M. Baes, Helv. Chim. Acta 54, 358 (1971).
[Crossref]

Matyas, M.

M. Matyas, V. Capek, J. Opt. Soc Am. A 5, 1901 (1988).
[Crossref]

Pelet, P.

Shah, M.

S. Wang, M. Shah, J. Crow, J. Appl. Phys. 43, 1861 (1972).
[Crossref]

Sun, X.

See, e.g., D. L. Jaggard, X. Sun, N. Engheta, IEEE Trans. Antennas Propag. AP-36, 1007 (1988).
[Crossref]

Wang, S.

S. Wang, M. Shah, J. Crow, J. Appl. Phys. 43, 1861 (1972).
[Crossref]

Yamamoto, S.

S. Yamamoto, Y. Koyamada, T. Makimoto, J. Appl. Phys. 43, 5090 (1972).
[Crossref]

Helv. Chim. Acta (1)

R. H. Martin, M. Marchant, M. Baes, Helv. Chim. Acta 54, 358 (1971).
[Crossref]

IEEE Trans. Antennas Propag. (1)

See, e.g., D. L. Jaggard, X. Sun, N. Engheta, IEEE Trans. Antennas Propag. AP-36, 1007 (1988).
[Crossref]

J. Appl. Phys. (2)

S. Wang, M. Shah, J. Crow, J. Appl. Phys. 43, 1861 (1972).
[Crossref]

S. Yamamoto, Y. Koyamada, T. Makimoto, J. Appl. Phys. 43, 5090 (1972).
[Crossref]

J. Opt. Soc Am. A (1)

M. Matyas, V. Capek, J. Opt. Soc Am. A 5, 1901 (1988).
[Crossref]

Opt. Lett. (1)

Other (2)

F. B. Hildebrand, Advanced Calculus for Applications, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1976), p. 52.

Specific rotation is defined as the rotation, α, per unit length L (in decimeters) and per unit pure-density liquid, d. Therefore [α] = α/(Ld). For solutions, it is defined as per 100 ml of solute, c. In that case, [α] = α · 100/(Lc).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Geometry of the slab waveguide under consideration. Note that the core is optically active.

Fig. 2
Fig. 2

The experimental configuration.

Fig. 3
Fig. 3

Near-field pattern of a 4-μm-thick waveguide. The vertical axis lies across the planar waveguide.

Fig. 4
Fig. 4

TM output for TE-launched, symmetrical, single-mode chiral and nonchiral waveguides. The reference point is for free-space crossed polarizers.

Tables (1)

Tables Icon

Table 1 Polarization Rotation of the 18-mm-Long Configuration

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2 E + ω 2 μ p E + 2 ω μ p ξ × E = 0 ,
E = C E ( z ) E TE + C M ( z ) E TM ,
d C E ( z ) / d z = ω μ p ξ C M ( z ) exp ( i Δ β z ) ,
d C M ( z ) / d z = ω μ p ξ C E ( z ) exp ( i Δ β z ) ,
d D ( z ) / d z = Q ( z ) D 2 ( z ) + R ( z ) ,
D ( z ) = 2 exp ( i Δ β z ) sin ( Λ z ) ω μ p ξ i Δ β sin ( Λ z ) + 2 Λ cos ( Λ z ) ,

Metrics