Abstract

Bragg gratings have been produced in germanosilicate optical fibers by exposing the core, through the side of the cladding, to a coherent UV two-beam interference pattern with a wavelength selected to lie in the oxygen-vacancy defect band of germania, near 244 nm. Fractional index perturbations of approximately 3 × 10−5 have been written in a 4.4-mm length of the core with a 5-min exposure. The Bragg filters formed by this new technique had reflectivities of 50–55% and spectral widths, at half-maximum, of 42 GHz.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
    [CrossRef]
  2. B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, Opt. Lett. 3, 66 (1978).
    [CrossRef] [PubMed]
  3. D. K. W. Lam, B. K. Garside, Appl. Opt. 20, 440 (1981).
    [CrossRef] [PubMed]
  4. A. J. Cohen, H. L. Smith, J. Phys. Chem. Solids 7, 301 (1958).
    [CrossRef]
  5. P. C. Schultz, in Proceedings of the Eleventh International Congress on Glass (North-Holland, Amsterdam, 1977), pp. 155–163.
  6. M. J. Yuen, Appl. Opt. 21, 136 (1982).
    [CrossRef] [PubMed]
  7. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  8. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).
  9. J. M. Jackson, M. E. Wells, G. Kordas, D. L. Kinser, R. A. Wecks, J. Appl. Phys. 58, 2308 (1985).
    [CrossRef]

1985

J. M. Jackson, M. E. Wells, G. Kordas, D. L. Kinser, R. A. Wecks, J. Appl. Phys. 58, 2308 (1985).
[CrossRef]

1982

1981

1978

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, Opt. Lett. 3, 66 (1978).
[CrossRef] [PubMed]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

1969

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

1958

A. J. Cohen, H. L. Smith, J. Phys. Chem. Solids 7, 301 (1958).
[CrossRef]

Cohen, A. J.

A. J. Cohen, H. L. Smith, J. Phys. Chem. Solids 7, 301 (1958).
[CrossRef]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, Opt. Lett. 3, 66 (1978).
[CrossRef] [PubMed]

Garside, B. K.

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, Opt. Lett. 3, 66 (1978).
[CrossRef] [PubMed]

Jackson, J. M.

J. M. Jackson, M. E. Wells, G. Kordas, D. L. Kinser, R. A. Wecks, J. Appl. Phys. 58, 2308 (1985).
[CrossRef]

Johnson, D. C.

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, Opt. Lett. 3, 66 (1978).
[CrossRef] [PubMed]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, Opt. Lett. 3, 66 (1978).
[CrossRef] [PubMed]

Kinser, D. L.

J. M. Jackson, M. E. Wells, G. Kordas, D. L. Kinser, R. A. Wecks, J. Appl. Phys. 58, 2308 (1985).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Kordas, G.

J. M. Jackson, M. E. Wells, G. Kordas, D. L. Kinser, R. A. Wecks, J. Appl. Phys. 58, 2308 (1985).
[CrossRef]

Lam, D. K. W.

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).

Schultz, P. C.

P. C. Schultz, in Proceedings of the Eleventh International Congress on Glass (North-Holland, Amsterdam, 1977), pp. 155–163.

Smith, H. L.

A. J. Cohen, H. L. Smith, J. Phys. Chem. Solids 7, 301 (1958).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).

Wecks, R. A.

J. M. Jackson, M. E. Wells, G. Kordas, D. L. Kinser, R. A. Wecks, J. Appl. Phys. 58, 2308 (1985).
[CrossRef]

Wells, M. E.

J. M. Jackson, M. E. Wells, G. Kordas, D. L. Kinser, R. A. Wecks, J. Appl. Phys. 58, 2308 (1985).
[CrossRef]

Yuen, M. J.

Appl. Opt.

Appl. Phys. Lett.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

J. Appl. Phys.

J. M. Jackson, M. E. Wells, G. Kordas, D. L. Kinser, R. A. Wecks, J. Appl. Phys. 58, 2308 (1985).
[CrossRef]

J. Phys. Chem. Solids

A. J. Cohen, H. L. Smith, J. Phys. Chem. Solids 7, 301 (1958).
[CrossRef]

Opt. Lett.

Other

P. C. Schultz, in Proceedings of the Eleventh International Congress on Glass (North-Holland, Amsterdam, 1977), pp. 155–163.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagram of the experimental setup. A beam splitter (not shown) at the fiber input end is used with the monochromator to measure the reflection spectrum of the Bragg grating. PMT, photomultiplier tube.

Fig. 2
Fig. 2

Transmission and reflection spectra for a 4.4-mm-long Bragg grating filter. A 1-m narrow-band monochromator with a resolution of 0.02 nm was used with a filtered arc lamp source to measure the in-fiber filter characteristics. The measured FWHM is corrected for the monochromator spectral response broadening.

Fig. 3
Fig. 3

Transmission spectrum of a Bragg filter in a multimode fiber, The fundamental mode is reflected by ∼30% at a wavelength of 581.5 nm. The next set of higher-order modes appears at a wavelength that is 3.25 nm shorter than the notch at the fundamental.

Fig. 4
Fig. 4

Computed (solid curves) and measured reflectivity for Bragg gratings of various strengths as a function of length. Experimental points are shown for a grating written with an average power of 18.5 mW at a wavelength of 244 nm (filled square) and with an average power of 4.5 mW at a wavelength of 257.3 nm (filled circle). Two different fibers were used.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R = tanh 2 Ω ,
Ω = π n ( L / λ ) ( Δ n / n ) η ( V ) .

Metrics