Abstract

In a recirculating 42-km fiber loop with round-trip loss compensated by Raman gain, we have used excess gain to study the influence of adiabatic energy changes on the propagation of soliton pulses over fiber paths of hundreds to thousands of kilometers. Both the measured pulse shapes and the corresponding optical spectra vary in agreement with simple scaling laws and maintain the expected time–bandwidth product.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, K. Smith, Opt. Lett. 13, 675 (1988).
    [CrossRef] [PubMed]
  2. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
    [CrossRef]
  3. L. F. Mollenauer, Philos. Trans. R. Soc. London Ser. A 315, 437(1985).
    [CrossRef]
  4. A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
    [CrossRef]
  5. L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
    [CrossRef]
  6. R. H. Stolen, C. Lee, R. K. Jain, J. Opt. Soc. Am. B 1, 652 (1984).
    [CrossRef]
  7. H. C. Lefevre, Electron. Lett. 16, 778 (1980).
    [CrossRef]
  8. J. E. Bowers, C. A. Burrus, R. J. McCoy, Electron. Lett. 21, 812 (1985).
    [CrossRef]

1988

1986

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

1985

L. F. Mollenauer, Philos. Trans. R. Soc. London Ser. A 315, 437(1985).
[CrossRef]

J. E. Bowers, C. A. Burrus, R. J. McCoy, Electron. Lett. 21, 812 (1985).
[CrossRef]

1984

1981

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

1980

H. C. Lefevre, Electron. Lett. 16, 778 (1980).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Bowers, J. E.

J. E. Bowers, C. A. Burrus, R. J. McCoy, Electron. Lett. 21, 812 (1985).
[CrossRef]

Burrus, C. A.

J. E. Bowers, C. A. Burrus, R. J. McCoy, Electron. Lett. 21, 812 (1985).
[CrossRef]

Gordon, J. P.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Hasegawa, A.

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

Islam, M. N.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

Jain, R. K.

Kodama, Y.

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

Lee, C.

Lefevre, H. C.

H. C. Lefevre, Electron. Lett. 16, 778 (1980).
[CrossRef]

McCoy, R. J.

J. E. Bowers, C. A. Burrus, R. J. McCoy, Electron. Lett. 21, 812 (1985).
[CrossRef]

Mollenauer, L. F.

L. F. Mollenauer, K. Smith, Opt. Lett. 13, 675 (1988).
[CrossRef] [PubMed]

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

L. F. Mollenauer, Philos. Trans. R. Soc. London Ser. A 315, 437(1985).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Smith, K.

Stolen, R. H.

R. H. Stolen, C. Lee, R. K. Jain, J. Opt. Soc. Am. B 1, 652 (1984).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Electron. Lett.

H. C. Lefevre, Electron. Lett. 16, 778 (1980).
[CrossRef]

J. E. Bowers, C. A. Burrus, R. J. McCoy, Electron. Lett. 21, 812 (1985).
[CrossRef]

IEEE J. Quantum Electron.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Philos. Trans. R. Soc. London Ser. A

L. F. Mollenauer, Philos. Trans. R. Soc. London Ser. A 315, 437(1985).
[CrossRef]

Phys. Rev. Lett.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Proc. IEEE

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the fiber loop and input/output arrangement.

Fig. 2
Fig. 2

Twofold adiabatic energy enhancement of the 200-μsec pulse train over 13 recirculations of the fiber loop (∼542 km). The pulse energy is in units of the input soliton energy.

Fig. 3
Fig. 3

(a) Microwave spectrum (showing only every fifth harmonic) of the intensity envelopes of pulses for a distance of 1002 km with unity gain and (b) the corresponding optical spectrum. The solid curve in (a) represents the calculated spectrum of a 48-psec, sech2 pulse. (A time–bandwidth product of 0.312 is inferred from the measurements.)

Fig. 4
Fig. 4

(a) Pulse widths (inferred from the microwave spectra), (b) optical spectral widths (FWHM), and (c) time–bandwidth products as functions of pulse energy (in units of the input soliton energy). All data are recorded for a distance of 1002 km. The dashed line in (c) represents the theoretical time–bandwidth product for a sech2 pulse (0.315).

Fig. 5
Fig. 5

(a) Microwave spectrum (showing every second harmonic) and (b) the optical spectrum corresponding to solitons with a fivefold energy enhancement over a distance of 1002 km. The solid curve in (a) represents the calculated spectrum of a 10-psec, sech2 pulse.

Metrics