Abstract

Two beams incident upon a bismuth silicon oxide crystal are shown to give rise to a subharmonic halfway between the incident beams and to an oscillating beam in a ring resonator. It is further shown that the two beams arising are in competition with each other: the subharmonic power rises when the oscillating beam declines owing to damping of the resonator.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Mallick, B. Imbert, H. Ducollet, J. P. Herriau, J. P. Huignard, J. Appl. Phys. 63, 5660 (1988).
    [CrossRef]
  2. K. H. Ringhofer, L. Solymar, Appl. Phys. Lett. 53, 1039 (1988).
    [CrossRef]
  3. D. R. Erbschloe, L. Solymar, Appl. Phys. Lett. 53, 1135 (1988).
    [CrossRef]
  4. D. R. Erbschloe, L. Solymar, Electron. Lett. 24, 683 (1988).
    [CrossRef]
  5. S.-K. Kwong, M. Cronin-Golomb, A. Yariv, IEEE J. Quantum Electron. QE-22, 1508 (1986).
    [CrossRef]
  6. V. A. Kalinin, L. Solymar, IEEE J. Quantum Electron. QE-24, 2070 (1988).
    [CrossRef]

1988 (5)

S. Mallick, B. Imbert, H. Ducollet, J. P. Herriau, J. P. Huignard, J. Appl. Phys. 63, 5660 (1988).
[CrossRef]

K. H. Ringhofer, L. Solymar, Appl. Phys. Lett. 53, 1039 (1988).
[CrossRef]

D. R. Erbschloe, L. Solymar, Appl. Phys. Lett. 53, 1135 (1988).
[CrossRef]

D. R. Erbschloe, L. Solymar, Electron. Lett. 24, 683 (1988).
[CrossRef]

V. A. Kalinin, L. Solymar, IEEE J. Quantum Electron. QE-24, 2070 (1988).
[CrossRef]

1986 (1)

S.-K. Kwong, M. Cronin-Golomb, A. Yariv, IEEE J. Quantum Electron. QE-22, 1508 (1986).
[CrossRef]

Cronin-Golomb, M.

S.-K. Kwong, M. Cronin-Golomb, A. Yariv, IEEE J. Quantum Electron. QE-22, 1508 (1986).
[CrossRef]

Ducollet, H.

S. Mallick, B. Imbert, H. Ducollet, J. P. Herriau, J. P. Huignard, J. Appl. Phys. 63, 5660 (1988).
[CrossRef]

Erbschloe, D. R.

D. R. Erbschloe, L. Solymar, Appl. Phys. Lett. 53, 1135 (1988).
[CrossRef]

D. R. Erbschloe, L. Solymar, Electron. Lett. 24, 683 (1988).
[CrossRef]

Herriau, J. P.

S. Mallick, B. Imbert, H. Ducollet, J. P. Herriau, J. P. Huignard, J. Appl. Phys. 63, 5660 (1988).
[CrossRef]

Huignard, J. P.

S. Mallick, B. Imbert, H. Ducollet, J. P. Herriau, J. P. Huignard, J. Appl. Phys. 63, 5660 (1988).
[CrossRef]

Imbert, B.

S. Mallick, B. Imbert, H. Ducollet, J. P. Herriau, J. P. Huignard, J. Appl. Phys. 63, 5660 (1988).
[CrossRef]

Kalinin, V. A.

V. A. Kalinin, L. Solymar, IEEE J. Quantum Electron. QE-24, 2070 (1988).
[CrossRef]

Kwong, S.-K.

S.-K. Kwong, M. Cronin-Golomb, A. Yariv, IEEE J. Quantum Electron. QE-22, 1508 (1986).
[CrossRef]

Mallick, S.

S. Mallick, B. Imbert, H. Ducollet, J. P. Herriau, J. P. Huignard, J. Appl. Phys. 63, 5660 (1988).
[CrossRef]

Ringhofer, K. H.

K. H. Ringhofer, L. Solymar, Appl. Phys. Lett. 53, 1039 (1988).
[CrossRef]

Solymar, L.

K. H. Ringhofer, L. Solymar, Appl. Phys. Lett. 53, 1039 (1988).
[CrossRef]

D. R. Erbschloe, L. Solymar, Appl. Phys. Lett. 53, 1135 (1988).
[CrossRef]

V. A. Kalinin, L. Solymar, IEEE J. Quantum Electron. QE-24, 2070 (1988).
[CrossRef]

D. R. Erbschloe, L. Solymar, Electron. Lett. 24, 683 (1988).
[CrossRef]

Yariv, A.

S.-K. Kwong, M. Cronin-Golomb, A. Yariv, IEEE J. Quantum Electron. QE-22, 1508 (1986).
[CrossRef]

Appl. Phys. Lett. (2)

K. H. Ringhofer, L. Solymar, Appl. Phys. Lett. 53, 1039 (1988).
[CrossRef]

D. R. Erbschloe, L. Solymar, Appl. Phys. Lett. 53, 1135 (1988).
[CrossRef]

Electron. Lett. (1)

D. R. Erbschloe, L. Solymar, Electron. Lett. 24, 683 (1988).
[CrossRef]

IEEE J. Quantum Electron. (2)

S.-K. Kwong, M. Cronin-Golomb, A. Yariv, IEEE J. Quantum Electron. QE-22, 1508 (1986).
[CrossRef]

V. A. Kalinin, L. Solymar, IEEE J. Quantum Electron. QE-24, 2070 (1988).
[CrossRef]

J. Appl. Phys. (1)

S. Mallick, B. Imbert, H. Ducollet, J. P. Herriau, J. P. Huignard, J. Appl. Phys. 63, 5660 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental arrangement used to study the interdependence of subharmonic and resonating beams.

Fig. 2
Fig. 2

Power in the subharmonic and resonating beams as a function of the frequency detuning of the pump beams. (Top) The resonating and subharmonic beams present simultaneously. (Bottom) The oscillation in the resonator blocked off with a screen.

Fig. 3
Fig. 3

Simultaneous power in the subharmonic and resonating beams as a function of the loss added to the cavity. The loss is defined as −ln(T), where T is the transmission of the neutral-density filter. The frequency detuning is 11 Hz.

Metrics