Abstract

Optical-activity-supported energy transfer is explained, and a transfer of 4% is observed in bismuth silicon oxide with same-frequency equal-intensity beams having the same circular polarization. The direction of energy exchange can be controlled by the sign of the electric field or the sense of the circularity. In general, energy exchange occurs by destructive and constructive interference between diffracted and transmitted beams; here with the induced grating vector along the [110] direction, interference cannot occur unless optical activity and an external electric held are present.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Marrakchi, J. P. Huignard, P. Günter, Appl. Phys. 24, 131 (1981).
    [CrossRef]
  2. G. C. Valley, M. B. Klein, Opt. Eng. 22, 704 (1983).
  3. F. Vachss, L. Hesselink, Opt. Commun. 62, 159 (1987).
    [CrossRef]
  4. S. I. Stepanov, M. P. Petrov, Opt. Acta 31, 1335 (1984).
    [CrossRef]
  5. M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
    [CrossRef]
  6. J. P. Huignard, J. P. Herriau, Appl. Opt. 16, 1807 (1977).
    [CrossRef] [PubMed]
  7. J. P. Huignard, Proc. Phys. 18, 308 (1987).
  8. N. A. Vainos, J. A. Khoury, R. W. Eason, Opt. Lett. 13, 503 (1988).
    [CrossRef] [PubMed]
  9. T. G. Pencheva, M. P. Petrov, S. I. Stepanov, Opt. Commun. 40, 175 (1982).
    [CrossRef]
  10. A. Marrakchi, R. V. Johnson, A. R. Tanguay, J. Opt. Soc. Am. B 3, 321 (1986).
    [CrossRef]
  11. G. E. Dovgalenko, N. V. Kukhtarev, S. M. Maevskii, V. V. Muraviev, JETP Lett. 12, 966 (1986).
  12. N. Kukhtarev, in Photorefractive Materials and Their Applications I: Fundamental Phenomena, P. Günter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), p. 99.
    [CrossRef]
  13. R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493 (1971).
    [CrossRef]
  14. M. Peltier, F. Micheron, J. Appl. Phys. 48, 3683 (1977).
    [CrossRef]
  15. M. Henry, S. Mallick, D. Rouède, J. Appl. Phys. 58, 2650 (1986).
    [CrossRef]

1988 (1)

1987 (2)

F. Vachss, L. Hesselink, Opt. Commun. 62, 159 (1987).
[CrossRef]

J. P. Huignard, Proc. Phys. 18, 308 (1987).

1986 (3)

G. E. Dovgalenko, N. V. Kukhtarev, S. M. Maevskii, V. V. Muraviev, JETP Lett. 12, 966 (1986).

M. Henry, S. Mallick, D. Rouède, J. Appl. Phys. 58, 2650 (1986).
[CrossRef]

A. Marrakchi, R. V. Johnson, A. R. Tanguay, J. Opt. Soc. Am. B 3, 321 (1986).
[CrossRef]

1984 (2)

S. I. Stepanov, M. P. Petrov, Opt. Acta 31, 1335 (1984).
[CrossRef]

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

1983 (1)

G. C. Valley, M. B. Klein, Opt. Eng. 22, 704 (1983).

1982 (1)

T. G. Pencheva, M. P. Petrov, S. I. Stepanov, Opt. Commun. 40, 175 (1982).
[CrossRef]

1981 (1)

A. Marrakchi, J. P. Huignard, P. Günter, Appl. Phys. 24, 131 (1981).
[CrossRef]

1977 (2)

1971 (1)

R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493 (1971).
[CrossRef]

Aldrich, R. E.

R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493 (1971).
[CrossRef]

Cronin-Golomb, M.

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Dovgalenko, G. E.

G. E. Dovgalenko, N. V. Kukhtarev, S. M. Maevskii, V. V. Muraviev, JETP Lett. 12, 966 (1986).

Eason, R. W.

Fisher, B.

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Günter, P.

A. Marrakchi, J. P. Huignard, P. Günter, Appl. Phys. 24, 131 (1981).
[CrossRef]

Harvill, M. L.

R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493 (1971).
[CrossRef]

Henry, M.

M. Henry, S. Mallick, D. Rouède, J. Appl. Phys. 58, 2650 (1986).
[CrossRef]

Herriau, J. P.

Hesselink, L.

F. Vachss, L. Hesselink, Opt. Commun. 62, 159 (1987).
[CrossRef]

Hou, S. L.

R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493 (1971).
[CrossRef]

Huignard, J. P.

J. P. Huignard, Proc. Phys. 18, 308 (1987).

A. Marrakchi, J. P. Huignard, P. Günter, Appl. Phys. 24, 131 (1981).
[CrossRef]

J. P. Huignard, J. P. Herriau, Appl. Opt. 16, 1807 (1977).
[CrossRef] [PubMed]

Johnson, R. V.

Khoury, J. A.

Klein, M. B.

G. C. Valley, M. B. Klein, Opt. Eng. 22, 704 (1983).

Kukhtarev, N.

N. Kukhtarev, in Photorefractive Materials and Their Applications I: Fundamental Phenomena, P. Günter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), p. 99.
[CrossRef]

Kukhtarev, N. V.

G. E. Dovgalenko, N. V. Kukhtarev, S. M. Maevskii, V. V. Muraviev, JETP Lett. 12, 966 (1986).

Maevskii, S. M.

G. E. Dovgalenko, N. V. Kukhtarev, S. M. Maevskii, V. V. Muraviev, JETP Lett. 12, 966 (1986).

Mallick, S.

M. Henry, S. Mallick, D. Rouède, J. Appl. Phys. 58, 2650 (1986).
[CrossRef]

Marrakchi, A.

A. Marrakchi, R. V. Johnson, A. R. Tanguay, J. Opt. Soc. Am. B 3, 321 (1986).
[CrossRef]

A. Marrakchi, J. P. Huignard, P. Günter, Appl. Phys. 24, 131 (1981).
[CrossRef]

Micheron, F.

M. Peltier, F. Micheron, J. Appl. Phys. 48, 3683 (1977).
[CrossRef]

Muraviev, V. V.

G. E. Dovgalenko, N. V. Kukhtarev, S. M. Maevskii, V. V. Muraviev, JETP Lett. 12, 966 (1986).

Peltier, M.

M. Peltier, F. Micheron, J. Appl. Phys. 48, 3683 (1977).
[CrossRef]

Pencheva, T. G.

T. G. Pencheva, M. P. Petrov, S. I. Stepanov, Opt. Commun. 40, 175 (1982).
[CrossRef]

Petrov, M. P.

S. I. Stepanov, M. P. Petrov, Opt. Acta 31, 1335 (1984).
[CrossRef]

T. G. Pencheva, M. P. Petrov, S. I. Stepanov, Opt. Commun. 40, 175 (1982).
[CrossRef]

Rouède, D.

M. Henry, S. Mallick, D. Rouède, J. Appl. Phys. 58, 2650 (1986).
[CrossRef]

Stepanov, S. I.

S. I. Stepanov, M. P. Petrov, Opt. Acta 31, 1335 (1984).
[CrossRef]

T. G. Pencheva, M. P. Petrov, S. I. Stepanov, Opt. Commun. 40, 175 (1982).
[CrossRef]

Tanguay, A. R.

Vachss, F.

F. Vachss, L. Hesselink, Opt. Commun. 62, 159 (1987).
[CrossRef]

Vainos, N. A.

Valley, G. C.

G. C. Valley, M. B. Klein, Opt. Eng. 22, 704 (1983).

White, J. O.

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Yariv, A.

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (1)

A. Marrakchi, J. P. Huignard, P. Günter, Appl. Phys. 24, 131 (1981).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

J. Appl. Phys. (3)

R. E. Aldrich, S. L. Hou, M. L. Harvill, J. Appl. Phys. 42, 493 (1971).
[CrossRef]

M. Peltier, F. Micheron, J. Appl. Phys. 48, 3683 (1977).
[CrossRef]

M. Henry, S. Mallick, D. Rouède, J. Appl. Phys. 58, 2650 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

G. E. Dovgalenko, N. V. Kukhtarev, S. M. Maevskii, V. V. Muraviev, JETP Lett. 12, 966 (1986).

Opt. Acta (1)

S. I. Stepanov, M. P. Petrov, Opt. Acta 31, 1335 (1984).
[CrossRef]

Opt. Commun. (2)

F. Vachss, L. Hesselink, Opt. Commun. 62, 159 (1987).
[CrossRef]

T. G. Pencheva, M. P. Petrov, S. I. Stepanov, Opt. Commun. 40, 175 (1982).
[CrossRef]

Opt. Eng. (1)

G. C. Valley, M. B. Klein, Opt. Eng. 22, 704 (1983).

Opt. Lett. (1)

Proc. Phys. (1)

J. P. Huignard, Proc. Phys. 18, 308 (1987).

Other (1)

N. Kukhtarev, in Photorefractive Materials and Their Applications I: Fundamental Phenomena, P. Günter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), p. 99.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Holographic configuration in a BSO crystal for grating recording using circularly polarized light at 514.5 nm.

Fig. 2
Fig. 2

Two-beam coupling process using circularly polarized light. Anisotropic transmission and diffraction lead to energy coupling.

Fig. 3
Fig. 3

Experimental results for energy coupling using circularly polarized light. No circular analyzer is used in the detection process. The polarity of the electric field is changed every 40 sec. The two upper curves represent the intensity of beams a and b using left-circular polarization at the input. The lower curve represents beam a using right polarization for both beams. Differences in transients can be attributed to differences in detector time constants, but the reversal of energy transfer with electric-field reversal or circular-polarization reversal is clear.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d a ± d y = ± β sc b ± β 0 a i G a ( α / 2 ) a ± ,
d b ± d y = ± β sc * a ± β 0 b i G b ± ( α / 2 ) b ± ,
a ± t ( y ) = a ± 0 ( cos γ y i G γ sin γ y ) ± β 0 a 0 γ sin γ y , b ± t ( y ) = b ± 0 ( cos γ y i G γ sin γ y ) ± β 0 b 0 γ sin γ y ,
a + d = β sc γ 3 ( G 2 sin γ y + β 0 2 γ y cos γ y ) b 0 , a d = i β 0 β sc γ 2 ( G y cos γ y + i γ y sin γ y G γ sin γ y ) b 0 ,
Δ I a + = | a + t + a + d | 2 | a + t | 2 = a + t * a + d + c.c . = 2 β 0 2 I a I b γ 4 I 0 ( G 2 sin γ y + β 0 2 γ y cos γ y ) × sin γ y Δ I l ,
Δ I a = a t * a d + c.c . = Δ I l 2 G β 0 r E D I a I b γ 3 I 0 ( γ y cos γ y sin γ y ) Δ I l Δ I n ,
Δ Δ I b ± Δ I a ± = 2 Δ I n = 4 G E 0 E D r 2 I a I b I 0 γ 3 ( γ y sin 2 γ y 2 ) e α y ,

Metrics