Abstract

We numerically study the initial-value problem of the nonlinear Schrödinger equation in the normal-dispersion regime of an optical fiber. A nonchirped hyperbolic tangent input pulse having arbitrary amplitude is found to evolve into a primary dark soliton having a constant amplitude and speed. The effect of the input amplitude is to alter the pulse width of the primary dark soliton. In addition, a set of secondary dark solitons of smaller amplitude moving away from the primary pulse is also generated. It is also shown that nonlinear dark pulses in optical fibers are more stable than bright pulses with respect to loss and noise.

© 1989 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Solitary-wave stability in birefringent optical fibers

X. D. Cao and C. J. McKinstrie
J. Opt. Soc. Am. B 10(7) 1202-1207 (1993)

Generation, propagation, and amplification of dark solitons

W. Zhao and E. Bourkoff
J. Opt. Soc. Am. B 9(7) 1134-1144 (1992)

Interactions between dark solitons

W. Zhao and E. Bourkoff
Opt. Lett. 14(24) 1371-1373 (1989)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription