Abstract

Fibers were prepared for second-harmonic generation by injecting a frequency-doubled (seed) signal with the fundamental light from a Nd:YAG laser. The relative phase shift between the seed and the second-harmonic light generated by the fiber was measured to be close to 90° (≃99 ± 9.2°). A water cell was used to sweep the relative phase of the waves with interferometric precision. Some physical consequences of a π/2 phase shift are pointed out.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Österberg, W. Margulis, Opt. Lett. 11,516 (1986);Opt. Lett. 12, 57 (1987).
    [CrossRef] [PubMed]
  2. M. C. Farries, P. St. J. Russell, M. E. Fermann, D. N. Payne, Electron. Lett. 23, 322 (1987).
    [CrossRef]
  3. R. H. Stolen, H. W. K. Tom, Opt. Lett. 12, 505 (1987).
    [CrossRef]
  4. See, for example, A. L. Smirl, G. C. Valley, R. A. Mullen, K. Bohnert, C. D. Mire, T. F. Boggess, Opt. Lett. 12, 501 (1987).
    [CrossRef] [PubMed]
  5. I. McMichael, P. Yeh, Opt. Lett. 12, 48 (1987).
    [CrossRef] [PubMed]
  6. A. Krotkus, W. Margulis, Appl. Phys. Lett. 52, 1942(1988).
    [CrossRef]
  7. H. W. K. Tom, R. H. Stolen, G. D. Aumiller, W. Pleibel, Opt. Lett. 13, 512 (1988).
    [CrossRef] [PubMed]
  8. W. Margulis, U. Österberg, J. Opt. Soc. Am. B 5, 312 (1988).
    [CrossRef]
  9. F. Payne, Electron. Lett. 23, 1215 (1987).
    [CrossRef]
  10. R. W. Terhune, D. A. Weinberger, J. Opt. Soc. Am. B 4, 661 (1987).
    [CrossRef]
  11. P. Chemla, Opt. Lett. 13, 669 (1988).
    [CrossRef]

1988 (4)

1987 (6)

1986 (1)

Aumiller, G. D.

Boggess, T. F.

Bohnert, K.

Chemla, P.

Farries, M. C.

M. C. Farries, P. St. J. Russell, M. E. Fermann, D. N. Payne, Electron. Lett. 23, 322 (1987).
[CrossRef]

Fermann, M. E.

M. C. Farries, P. St. J. Russell, M. E. Fermann, D. N. Payne, Electron. Lett. 23, 322 (1987).
[CrossRef]

Krotkus, A.

A. Krotkus, W. Margulis, Appl. Phys. Lett. 52, 1942(1988).
[CrossRef]

Margulis, W.

McMichael, I.

Mire, C. D.

Mullen, R. A.

Österberg, U.

Payne, D. N.

M. C. Farries, P. St. J. Russell, M. E. Fermann, D. N. Payne, Electron. Lett. 23, 322 (1987).
[CrossRef]

Payne, F.

F. Payne, Electron. Lett. 23, 1215 (1987).
[CrossRef]

Pleibel, W.

Russell, P. St. J.

M. C. Farries, P. St. J. Russell, M. E. Fermann, D. N. Payne, Electron. Lett. 23, 322 (1987).
[CrossRef]

Smirl, A. L.

Stolen, R. H.

Terhune, R. W.

Tom, H. W. K.

Valley, G. C.

Weinberger, D. A.

Yeh, P.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental setup. Left: For preparation, both the IR and the SH input beams are relatively intense. For the probing, filters F1 and F2 are exchanged, and the seed green beam generated by the KTP crystal is heavily attenuated. Filter F3 removes the IR, and the green light is detected by a Si photodiode (P) and registered by a chart recorder (CR). Right: As the water level in the cell is raised with the addition of water drops, the relative phase of the IR and (probing) green beam is slowly altered by dispersion in the liquid.

Fig. 2
Fig. 2

Interference between the green light generated by the crystal and by the fiber. The first point of the pattern shows that before water drops are added to the phase-adjustment cell there is a phase difference of approximately π/2 between the waves.

Metrics