Abstract

Based on a stress analysis of bow-tie optical fibers, a mechanism for true single-mode single-polarization operation of bow-tie optical fibers is presented. The y-polarized mode can have a loss of the order of 10 dB/m, while the x-popolarized mode remains well confined and without loss.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, Electron. Lett. 19, 246, 679 (1983).
    [CrossRef]
  2. J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, R. E. Howard, IEEE J. Lightwave Technol. LT-1, 370 (1983).
    [CrossRef]
  3. A. W. Snyder, F. F. Rühl, J. Opt. Soc. Am. 73, 1165 (1983).
    [CrossRef]
  4. P. L. Chu, R. A. Sammut, IEEE J. Lightwave Technol. LT-2, 650 (1984).
  5. G. B. Hocker, Appl. Opt. 18, 3679 (1979).
    [CrossRef] [PubMed]
  6. L. G. Cohen, D. Marcuse, W. L. Mammel, IEEE Trans. Microwave Theory Tech. MTT-30, 1455 (1982).
    [CrossRef]
  7. F. F. Rühl, D. Wong, in Proceedings of the 12th Australian Conference on Optical Fibre Technology (Institute of Radio and Electronics Engineers, Sydney, Australia, 1987), p. 189.

1984 (1)

P. L. Chu, R. A. Sammut, IEEE J. Lightwave Technol. LT-2, 650 (1984).

1983 (3)

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, Electron. Lett. 19, 246, 679 (1983).
[CrossRef]

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, R. E. Howard, IEEE J. Lightwave Technol. LT-1, 370 (1983).
[CrossRef]

A. W. Snyder, F. F. Rühl, J. Opt. Soc. Am. 73, 1165 (1983).
[CrossRef]

1982 (1)

L. G. Cohen, D. Marcuse, W. L. Mammel, IEEE Trans. Microwave Theory Tech. MTT-30, 1455 (1982).
[CrossRef]

1979 (1)

Birch, R. D.

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, Electron. Lett. 19, 246, 679 (1983).
[CrossRef]

Chu, P. L.

P. L. Chu, R. A. Sammut, IEEE J. Lightwave Technol. LT-2, 650 (1984).

Cohen, L. G.

L. G. Cohen, D. Marcuse, W. L. Mammel, IEEE Trans. Microwave Theory Tech. MTT-30, 1455 (1982).
[CrossRef]

Hocker, G. B.

Howard, R. E.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, R. E. Howard, IEEE J. Lightwave Technol. LT-1, 370 (1983).
[CrossRef]

MacChesney, J. B.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, R. E. Howard, IEEE J. Lightwave Technol. LT-1, 370 (1983).
[CrossRef]

Mammel, W. L.

L. G. Cohen, D. Marcuse, W. L. Mammel, IEEE Trans. Microwave Theory Tech. MTT-30, 1455 (1982).
[CrossRef]

Marcuse, D.

L. G. Cohen, D. Marcuse, W. L. Mammel, IEEE Trans. Microwave Theory Tech. MTT-30, 1455 (1982).
[CrossRef]

Payne, D. N.

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, Electron. Lett. 19, 246, 679 (1983).
[CrossRef]

Pleibel, W.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, R. E. Howard, IEEE J. Lightwave Technol. LT-1, 370 (1983).
[CrossRef]

Rühl, F. F.

A. W. Snyder, F. F. Rühl, J. Opt. Soc. Am. 73, 1165 (1983).
[CrossRef]

F. F. Rühl, D. Wong, in Proceedings of the 12th Australian Conference on Optical Fibre Technology (Institute of Radio and Electronics Engineers, Sydney, Australia, 1987), p. 189.

Sammut, R. A.

P. L. Chu, R. A. Sammut, IEEE J. Lightwave Technol. LT-2, 650 (1984).

Sears, F. M.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, R. E. Howard, IEEE J. Lightwave Technol. LT-1, 370 (1983).
[CrossRef]

Simpson, J. R.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, R. E. Howard, IEEE J. Lightwave Technol. LT-1, 370 (1983).
[CrossRef]

Snyder, A. W.

Stolen, R. H.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, R. E. Howard, IEEE J. Lightwave Technol. LT-1, 370 (1983).
[CrossRef]

Tarbox, E. J.

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, Electron. Lett. 19, 246, 679 (1983).
[CrossRef]

Varnham, M. P.

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, Electron. Lett. 19, 246, 679 (1983).
[CrossRef]

Wong, D.

F. F. Rühl, D. Wong, in Proceedings of the 12th Australian Conference on Optical Fibre Technology (Institute of Radio and Electronics Engineers, Sydney, Australia, 1987), p. 189.

Appl. Opt. (1)

Electron. Lett. (1)

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, Electron. Lett. 19, 246, 679 (1983).
[CrossRef]

IEEE J. Lightwave Technol. (2)

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, R. E. Howard, IEEE J. Lightwave Technol. LT-1, 370 (1983).
[CrossRef]

P. L. Chu, R. A. Sammut, IEEE J. Lightwave Technol. LT-2, 650 (1984).

IEEE Trans. Microwave Theory Tech. (1)

L. G. Cohen, D. Marcuse, W. L. Mammel, IEEE Trans. Microwave Theory Tech. MTT-30, 1455 (1982).
[CrossRef]

J. Opt. Soc. Am. (1)

Other (1)

F. F. Rühl, D. Wong, in Proceedings of the 12th Australian Conference on Optical Fibre Technology (Institute of Radio and Electronics Engineers, Sydney, Australia, 1987), p. 189.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Structure of the bow-tie fiber. The radii of the core, the ring, the bow, and the cladding regions are a, r1, r2, and b, respectively.

Fig. 2
Fig. 2

Calculated refractive-index profile along the directions (a) θ = 0°, (b) θ = 45°, and (c) θ = 90° for the parameters in Table 1. The calculated bounds on the effective indices are indicated by the dotted lines.

Fig. 3
Fig. 3

Averaged profile used in the loss calculation. The circularly symmetric multiple-step profile is obtained by averaging in each annular region (core, ring, bow, and outer cladding) over r and θ.

Fig. 4
Fig. 4

Variation of the loss with the expansion coefficient of the core. The curves correspond to the data in Table 1, with additional index changes as indicated.

Tables (1)

Tables Icon

Table 1 Parameters for the Fiber of Fig. 1a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n 1 , eff n 0 , eff = 0 2 π 0 Δ n ( r , θ ) Ψ 1 ( r , θ ) Ψ 0 ( r ) r d r d θ 0 2 π 0 Ψ 1 ( r , θ ) Ψ 0 ( r ) r d r d θ .
Ψ b ( r ) = { Ψ c ( r ) r < r 1 Ψ c ( r 1 ) r > r 1 ,

Metrics