Abstract

We report two-wave mixing and self-pumped phase-conjugation measurements for GaAlAs laser-diode radiation at 830 nm in BaTiO3. At 11°C, two-wave mixing gain coefficients as large as 18 cm−1 and response times of the order of 1 min have been observed by using an optimized mixing geometry. Phase-conjugate reflectivities as large as 56% with 10-sec response times have also been measured using BaTiO3 in a passive ring conjugator when the source laser is optically isolated from the conjugator. These results represent significant improvements over corresponding values previously reported.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Cronin-Golomb, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1985), paper THT3.
  2. M. Cronin-Golomb, K. Y. Lau, A. Yariv, Appl. Phys. Lett. 47, 567 (1985).
    [CrossRef]
  3. B. T. Anderson, P. R. Forman, F. C. Jahoda, Opt. Lett. 10, 627 (1985).
    [CrossRef] [PubMed]
  4. M. Cronin-Golomb, A. Yariv, Opt. Lett. 11, 455 (1986).
    [CrossRef] [PubMed]
  5. A. E. Chiou, P. Yeh, Opt. Lett. 11, 461 (1986).
    [CrossRef] [PubMed]
  6. W. R. Christian, I. C. McMichael, “Laser beam cleanup at 830 nm,” Proc. Soc. Photo-Opt. Instrum. Eng. (to be published).
  7. J. Feinberg, G. D. Bacher, Appl. Phys. Lett. 48, 570 (1986).
    [CrossRef]
  8. S. Sternklar, S. Weiss, M. Segev, B. Fischer, Opt. Lett. 11, 528 (1986).
    [CrossRef] [PubMed]
  9. M. Cronin-Golomb, A. Yariv, I. Ury, Appl. Phys. Lett. 48, 1240 (1986).
    [CrossRef]
  10. M. Segev, S. Weiss, B. Fischer, Appl. Phys. Lett. 50, 1397 (1987).
    [CrossRef]
  11. Y. Fainman, E. Klancnik, S. H. Lee, Opt. Eng. 25, 228 (1986).
  12. R. L. Townsend, J. T. LaMacchia, J. Appl. Phys. 41, 5188 (1970).
    [CrossRef]
  13. S. Ducharme, J. Feinberg, J. Appl. Phys. 56, 839 (1984).
    [CrossRef]
  14. M. Cronin-Golomb, G. A. Rakuljic, A. Yariv, Proc. Soc. Photo-Opt. Instrum. Eng. 613,106 (1986).

1987 (1)

M. Segev, S. Weiss, B. Fischer, Appl. Phys. Lett. 50, 1397 (1987).
[CrossRef]

1986 (7)

Y. Fainman, E. Klancnik, S. H. Lee, Opt. Eng. 25, 228 (1986).

M. Cronin-Golomb, A. Yariv, I. Ury, Appl. Phys. Lett. 48, 1240 (1986).
[CrossRef]

M. Cronin-Golomb, G. A. Rakuljic, A. Yariv, Proc. Soc. Photo-Opt. Instrum. Eng. 613,106 (1986).

J. Feinberg, G. D. Bacher, Appl. Phys. Lett. 48, 570 (1986).
[CrossRef]

M. Cronin-Golomb, A. Yariv, Opt. Lett. 11, 455 (1986).
[CrossRef] [PubMed]

A. E. Chiou, P. Yeh, Opt. Lett. 11, 461 (1986).
[CrossRef] [PubMed]

S. Sternklar, S. Weiss, M. Segev, B. Fischer, Opt. Lett. 11, 528 (1986).
[CrossRef] [PubMed]

1985 (2)

B. T. Anderson, P. R. Forman, F. C. Jahoda, Opt. Lett. 10, 627 (1985).
[CrossRef] [PubMed]

M. Cronin-Golomb, K. Y. Lau, A. Yariv, Appl. Phys. Lett. 47, 567 (1985).
[CrossRef]

1984 (1)

S. Ducharme, J. Feinberg, J. Appl. Phys. 56, 839 (1984).
[CrossRef]

1970 (1)

R. L. Townsend, J. T. LaMacchia, J. Appl. Phys. 41, 5188 (1970).
[CrossRef]

Anderson, B. T.

Bacher, G. D.

J. Feinberg, G. D. Bacher, Appl. Phys. Lett. 48, 570 (1986).
[CrossRef]

Chiou, A. E.

Christian, W. R.

W. R. Christian, I. C. McMichael, “Laser beam cleanup at 830 nm,” Proc. Soc. Photo-Opt. Instrum. Eng. (to be published).

Cronin-Golomb, M.

M. Cronin-Golomb, A. Yariv, I. Ury, Appl. Phys. Lett. 48, 1240 (1986).
[CrossRef]

M. Cronin-Golomb, A. Yariv, Opt. Lett. 11, 455 (1986).
[CrossRef] [PubMed]

M. Cronin-Golomb, G. A. Rakuljic, A. Yariv, Proc. Soc. Photo-Opt. Instrum. Eng. 613,106 (1986).

M. Cronin-Golomb, K. Y. Lau, A. Yariv, Appl. Phys. Lett. 47, 567 (1985).
[CrossRef]

M. Cronin-Golomb, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1985), paper THT3.

Ducharme, S.

S. Ducharme, J. Feinberg, J. Appl. Phys. 56, 839 (1984).
[CrossRef]

Fainman, Y.

Y. Fainman, E. Klancnik, S. H. Lee, Opt. Eng. 25, 228 (1986).

Feinberg, J.

J. Feinberg, G. D. Bacher, Appl. Phys. Lett. 48, 570 (1986).
[CrossRef]

S. Ducharme, J. Feinberg, J. Appl. Phys. 56, 839 (1984).
[CrossRef]

Fischer, B.

M. Segev, S. Weiss, B. Fischer, Appl. Phys. Lett. 50, 1397 (1987).
[CrossRef]

S. Sternklar, S. Weiss, M. Segev, B. Fischer, Opt. Lett. 11, 528 (1986).
[CrossRef] [PubMed]

Forman, P. R.

Jahoda, F. C.

Klancnik, E.

Y. Fainman, E. Klancnik, S. H. Lee, Opt. Eng. 25, 228 (1986).

LaMacchia, J. T.

R. L. Townsend, J. T. LaMacchia, J. Appl. Phys. 41, 5188 (1970).
[CrossRef]

Lau, K. Y.

M. Cronin-Golomb, K. Y. Lau, A. Yariv, Appl. Phys. Lett. 47, 567 (1985).
[CrossRef]

Lee, S. H.

Y. Fainman, E. Klancnik, S. H. Lee, Opt. Eng. 25, 228 (1986).

McMichael, I. C.

W. R. Christian, I. C. McMichael, “Laser beam cleanup at 830 nm,” Proc. Soc. Photo-Opt. Instrum. Eng. (to be published).

Rakuljic, G. A.

M. Cronin-Golomb, G. A. Rakuljic, A. Yariv, Proc. Soc. Photo-Opt. Instrum. Eng. 613,106 (1986).

Segev, M.

M. Segev, S. Weiss, B. Fischer, Appl. Phys. Lett. 50, 1397 (1987).
[CrossRef]

S. Sternklar, S. Weiss, M. Segev, B. Fischer, Opt. Lett. 11, 528 (1986).
[CrossRef] [PubMed]

Sternklar, S.

Townsend, R. L.

R. L. Townsend, J. T. LaMacchia, J. Appl. Phys. 41, 5188 (1970).
[CrossRef]

Ury, I.

M. Cronin-Golomb, A. Yariv, I. Ury, Appl. Phys. Lett. 48, 1240 (1986).
[CrossRef]

Weiss, S.

M. Segev, S. Weiss, B. Fischer, Appl. Phys. Lett. 50, 1397 (1987).
[CrossRef]

S. Sternklar, S. Weiss, M. Segev, B. Fischer, Opt. Lett. 11, 528 (1986).
[CrossRef] [PubMed]

Yariv, A.

M. Cronin-Golomb, A. Yariv, Opt. Lett. 11, 455 (1986).
[CrossRef] [PubMed]

M. Cronin-Golomb, G. A. Rakuljic, A. Yariv, Proc. Soc. Photo-Opt. Instrum. Eng. 613,106 (1986).

M. Cronin-Golomb, A. Yariv, I. Ury, Appl. Phys. Lett. 48, 1240 (1986).
[CrossRef]

M. Cronin-Golomb, K. Y. Lau, A. Yariv, Appl. Phys. Lett. 47, 567 (1985).
[CrossRef]

Yeh, P.

Appl. Phys. Lett. (4)

M. Cronin-Golomb, K. Y. Lau, A. Yariv, Appl. Phys. Lett. 47, 567 (1985).
[CrossRef]

M. Cronin-Golomb, A. Yariv, I. Ury, Appl. Phys. Lett. 48, 1240 (1986).
[CrossRef]

M. Segev, S. Weiss, B. Fischer, Appl. Phys. Lett. 50, 1397 (1987).
[CrossRef]

J. Feinberg, G. D. Bacher, Appl. Phys. Lett. 48, 570 (1986).
[CrossRef]

J. Appl. Phys. (2)

R. L. Townsend, J. T. LaMacchia, J. Appl. Phys. 41, 5188 (1970).
[CrossRef]

S. Ducharme, J. Feinberg, J. Appl. Phys. 56, 839 (1984).
[CrossRef]

Opt. Eng. (1)

Y. Fainman, E. Klancnik, S. H. Lee, Opt. Eng. 25, 228 (1986).

Opt. Lett. (4)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

M. Cronin-Golomb, G. A. Rakuljic, A. Yariv, Proc. Soc. Photo-Opt. Instrum. Eng. 613,106 (1986).

Other (2)

W. R. Christian, I. C. McMichael, “Laser beam cleanup at 830 nm,” Proc. Soc. Photo-Opt. Instrum. Eng. (to be published).

M. Cronin-Golomb, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1985), paper THT3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic for TWM in BaTiO3 at 830 nm. The laser beam is split into pump and probe beams that interact in a BaTiO3 crystal immersed in a temperature-controlled oil bath. The TWM parameters are measured for various geometries (angles α, β, and γ) and crystal temperatures. M's, mirrors.

Fig. 2
Fig. 2

Measured TWM gain coefficient versus the crystal temperature. The geometry consists of angles α = 25°, β = 50°, and γ = 30°. The pump-probe ratio is large (>105), ensuring minimal pump depletion. The line is a linear least-squares fit to the data points.

Fig. 3
Fig. 3

Setup for self-pumped PC in BaTiO3 at 830 nm. In this experiment, after beam correction the laser is isolated from the ring phase conjugator (a BaTiO3 crystal immersed in a temperature-controlled oil bath and two external mirrors M3 and M4) by a Faraday rotator. The half-wave plate is used to correct a 45° polarization rotation experienced by the beam as it passes through the Faraday rotator. A pellicle samples the incident and reflected beams (with detectors D1 and D2) to determine the PC reflectivity.

Fig. 4
Fig. 4

Measured time response (beam unblocked at t = 0) of the optically isolated, self-pumped phase conjugator for various incident intensities. The turn-on time decreases with increasing incident power, and in each case saturation occurs at a PC reflectivity of 56% (not corrected for Fresnel reflections).

Fig. 5
Fig. 5

Measured time response (beam unblocked at t = 0) of the self-pumped phase conjugator without optical isolation. Without isolation the PC reflectivity saturates at only 28%, is noisy, and takes longer to reach saturation.

Metrics