Abstract

Tunable, single-frequency, Nd:YAG microchip lasers have been piezoelectrically frequency modulated over several hundred megahertz at rates from dc to 25 MHz.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zayhowski, A. Mooradian, Opt. Lett. 14, 24 (1989).
    [CrossRef] [PubMed]
  2. T. J. Kane, A. C. Nilsson, R. L. Byer, Opt. Lett. 12, 175 (1987).
    [CrossRef] [PubMed]
  3. K. Kubodera, J. Noda, Appl. Opt. 21, 3466 (1982).
    [CrossRef] [PubMed]
  4. K. Otsuka, K. Kubodera, IEEE J. Quantum Electron. QE-16, 538 (1980).
    [CrossRef]
  5. A. Owyoung, P. Esherick, Opt. Lett. 12, 999 (1987).
    [CrossRef] [PubMed]
  6. B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, Opt. Lett. 10, 62 (1985).
    [CrossRef] [PubMed]
  7. E. O. Ammann, B. J. McMurtry, M. K. Oshman, IEEE J. Quantum Electron. QE-1, 263 (1965).
    [CrossRef]

1989

1987

1985

1982

1980

K. Otsuka, K. Kubodera, IEEE J. Quantum Electron. QE-16, 538 (1980).
[CrossRef]

1965

E. O. Ammann, B. J. McMurtry, M. K. Oshman, IEEE J. Quantum Electron. QE-1, 263 (1965).
[CrossRef]

Ammann, E. O.

E. O. Ammann, B. J. McMurtry, M. K. Oshman, IEEE J. Quantum Electron. QE-1, 263 (1965).
[CrossRef]

Byer, R. L.

Dixon, G. J.

Esherick, P.

Kane, T. J.

Kubodera, K.

K. Kubodera, J. Noda, Appl. Opt. 21, 3466 (1982).
[CrossRef] [PubMed]

K. Otsuka, K. Kubodera, IEEE J. Quantum Electron. QE-16, 538 (1980).
[CrossRef]

McMurtry, B. J.

E. O. Ammann, B. J. McMurtry, M. K. Oshman, IEEE J. Quantum Electron. QE-1, 263 (1965).
[CrossRef]

Mooradian, A.

Nilsson, A. C.

Noda, J.

Oshman, M. K.

E. O. Ammann, B. J. McMurtry, M. K. Oshman, IEEE J. Quantum Electron. QE-1, 263 (1965).
[CrossRef]

Otsuka, K.

K. Otsuka, K. Kubodera, IEEE J. Quantum Electron. QE-16, 538 (1980).
[CrossRef]

Owyoung, A.

Zayhowski, J. J.

Zhou, B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Far-field intensity profile of a microchip laser. The left-hand portion of the figure shows the image obtained by mapping the two-dimensional field intensity into shades of gray. The right-hand portion shows an almost perfectly Gaussian intensity profile in two orthogonal directions. These data are for a Ti:Al2O3 pump. Similar performance is achieved with a cw diode laser pump.

Fig. 2
Fig. 2

Illustration of a piezoelectrically tunable, single-frequency, Nd:YAG microchip laser package. The actual size of the Nd:YAG crystal used in the experiments is 0.65 mm × 1.0 mm × 2.0 mm.

Fig. 3
Fig. 3

Heterodyne spectra of a piezoelectrically frequency-modulated, single-frequency, Nd:YAG microchip laser beat against a fixed-frequency microchip laser. (a) No voltage is applied to the transducer of the tunable laser. The resulting spectrum shows an instrument-limited linewidth of less than 5 kHz for each laser. (b) The piezoelectrically tunable laser is driven by a ±800-V sine wave at approximately 1 kHz. The deviation of the spectrum from the expected theoretical curve is due to the frequency response of the heterodyne system, which is not flat over the entire range. (c) The piezoelectrically tunable laser is driven by a ±20-V sine wave at an acoustic resonance near 5 MHz. (d) The piezoelectrically tunable laser is driven by a ±20-V sine wave at an acoustic resonance near 19 MHz.

Metrics