Abstract

There are two different approaches for improving the accuracy of analog optical associative processors: postprocessing with a bimodal system and preprocessing with a preconditioner. These two approaches can be combined to develop an adaptive optical multiprocessor that can adjust the computational steps depending on the data and produce solutions of linear algebra problems with a specified accuracy in a given amount of time.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Caulfield, J. Gruninger, J. Ludman, K. Steiglitz, H. Rabitz, J. Gelfand, E. Tsoni, Appl. Opt. 25, 3128 (1986).
    [CrossRef] [PubMed]
  2. A. Ghosh, P. Paparao, Appl. Opt. 26, 2734 (1987).
    [CrossRef] [PubMed]
  3. A. Ghosh, P. Paparao, J. Opt. Soc. Am. A 5, 39 (1988).
    [CrossRef]
  4. G. Golub, C. VanLoan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1983).
  5. J. Ortega, R. Voigt, SIAM Rev. 27, 149 (1985).
    [CrossRef]
  6. A. Ghosh, P. Paparao, Special issue on optical computing, Opt. Eng. 28, 354 (1989).

1989 (1)

A. Ghosh, P. Paparao, Special issue on optical computing, Opt. Eng. 28, 354 (1989).

1988 (1)

1987 (1)

1986 (1)

1985 (1)

J. Ortega, R. Voigt, SIAM Rev. 27, 149 (1985).
[CrossRef]

Caulfield, H.

Gelfand, J.

Ghosh, A.

Golub, G.

G. Golub, C. VanLoan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1983).

Gruninger, J.

Ludman, J.

Ortega, J.

J. Ortega, R. Voigt, SIAM Rev. 27, 149 (1985).
[CrossRef]

Paparao, P.

Rabitz, H.

Steiglitz, K.

Tsoni, E.

VanLoan, C.

G. Golub, C. VanLoan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1983).

Voigt, R.

J. Ortega, R. Voigt, SIAM Rev. 27, 149 (1985).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

A. Ghosh, P. Paparao, Special issue on optical computing, Opt. Eng. 28, 354 (1989).

SIAM Rev. (1)

J. Ortega, R. Voigt, SIAM Rev. 27, 149 (1985).
[CrossRef]

Other (1)

G. Golub, C. VanLoan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Convergence of the three algorithms in Table 1.

Fig. 2
Fig. 2

Adaptive optical linear algebra processor with preprocessing and postprocessing.

Tables (1)

Tables Icon

Table 1 SSPPC Algorithm and Its Variants

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C ( D m + 1 ) = 1 / { 1 [ 1 1 / C ( A ) ] p m } .

Metrics