Abstract

A crossed resonator Fabry–Perot device is analyzed for a collection of nonlinear-optical materials, including bulk semiconductors, the intraband transition in a multiple quantum well, organic polymers, and semiconductor-doped glasses, to determine its suitability for photonic switching and optical computing. We find that as an optical switch the crossed resonator offers a considerably steeper threshold and somewhat flatter wings than a single Fabry–Perot resonator and that to achieve optical gain the absorption per pass must be lower than 0.05.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, e.g., the references in H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, Orlando, Fla., 1985).
  2. Much research has been published on this. See H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds., Optical Bistability III (Springer-Verlag, Berlin, 1986)andT. K. Gustafson, P. W. Smith, eds., Photonic Switching (Springer-Verlag, Berlin, 1988).
    [Crossref]
  3. L. C. West, Computer 20, 34 (1987).
    [Crossref]
  4. N. C. Craft, Appl. Opt. 27, 1764 (1988).
    [Crossref] [PubMed]
  5. D. A. B. Miller, IEEE J. Quantum Electron. QE-17, 306 (1981).
    [Crossref]
  6. P. Henrici, Elements of Numerical Analysis (Wiley, New York, 1964), pp. 115–117.
  7. P. J. Bradley, P. Wheatley, G. Parry, J. E. Midwinter, P. Misty, J. S. Roberts, Electron. Lett. 23, 213 (1987).
    [Crossref]
  8. L. C. West, “Spectroscopy of GaAs quantum wells,” Ph.D. dissertation (Stanford University, 1985), pp. 96–97 (National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Va. 22161).

1988 (1)

1987 (2)

L. C. West, Computer 20, 34 (1987).
[Crossref]

P. J. Bradley, P. Wheatley, G. Parry, J. E. Midwinter, P. Misty, J. S. Roberts, Electron. Lett. 23, 213 (1987).
[Crossref]

1981 (1)

D. A. B. Miller, IEEE J. Quantum Electron. QE-17, 306 (1981).
[Crossref]

Bradley, P. J.

P. J. Bradley, P. Wheatley, G. Parry, J. E. Midwinter, P. Misty, J. S. Roberts, Electron. Lett. 23, 213 (1987).
[Crossref]

Craft, N. C.

Gibbs, H. M.

See, e.g., the references in H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, Orlando, Fla., 1985).

Henrici, P.

P. Henrici, Elements of Numerical Analysis (Wiley, New York, 1964), pp. 115–117.

Midwinter, J. E.

P. J. Bradley, P. Wheatley, G. Parry, J. E. Midwinter, P. Misty, J. S. Roberts, Electron. Lett. 23, 213 (1987).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, IEEE J. Quantum Electron. QE-17, 306 (1981).
[Crossref]

Misty, P.

P. J. Bradley, P. Wheatley, G. Parry, J. E. Midwinter, P. Misty, J. S. Roberts, Electron. Lett. 23, 213 (1987).
[Crossref]

Parry, G.

P. J. Bradley, P. Wheatley, G. Parry, J. E. Midwinter, P. Misty, J. S. Roberts, Electron. Lett. 23, 213 (1987).
[Crossref]

Roberts, J. S.

P. J. Bradley, P. Wheatley, G. Parry, J. E. Midwinter, P. Misty, J. S. Roberts, Electron. Lett. 23, 213 (1987).
[Crossref]

West, L. C.

L. C. West, Computer 20, 34 (1987).
[Crossref]

L. C. West, “Spectroscopy of GaAs quantum wells,” Ph.D. dissertation (Stanford University, 1985), pp. 96–97 (National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Va. 22161).

Wheatley, P.

P. J. Bradley, P. Wheatley, G. Parry, J. E. Midwinter, P. Misty, J. S. Roberts, Electron. Lett. 23, 213 (1987).
[Crossref]

Appl. Opt. (1)

Computer (1)

L. C. West, Computer 20, 34 (1987).
[Crossref]

Electron. Lett. (1)

P. J. Bradley, P. Wheatley, G. Parry, J. E. Midwinter, P. Misty, J. S. Roberts, Electron. Lett. 23, 213 (1987).
[Crossref]

IEEE J. Quantum Electron. (1)

D. A. B. Miller, IEEE J. Quantum Electron. QE-17, 306 (1981).
[Crossref]

Other (4)

P. Henrici, Elements of Numerical Analysis (Wiley, New York, 1964), pp. 115–117.

See, e.g., the references in H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, Orlando, Fla., 1985).

Much research has been published on this. See H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds., Optical Bistability III (Springer-Verlag, Berlin, 1986)andT. K. Gustafson, P. W. Smith, eds., Photonic Switching (Springer-Verlag, Berlin, 1988).
[Crossref]

L. C. West, “Spectroscopy of GaAs quantum wells,” Ph.D. dissertation (Stanford University, 1985), pp. 96–97 (National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Va. 22161).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fabry–Perot crossed resonator. R1 and R2 are the reflectivities, and L1 is the length of the signal cavity; R3 and R4 are the reflectivities, and L2 is the length of the control cavity.

Fig. 2
Fig. 2

An ideal optical switch. The designated points are used in the definition of the gain in Eq. (1).

Fig. 3
Fig. 3

Optical switch for PTS, in which the output signal intensity is plotted against the input control intensity. The input bias is 14.8 MW/cm2, L1 = L2 = 10 μm, R1 = R2 = R3 = R4 = 0.85, δ1 = 0.141, and δ2 = 0.16.

Fig. 4
Fig. 4

Gain of Eq. (1) versus αL for the parameters given in Table 1. The materials are L, leaded glass; B, 4-BCMU; P, PTS; M, MnO2 in glass; C, CdSxSe1−x in glass; Q, QWEST; G, GaAs; and Z, ZnSe.

Tables (1)

Tables Icon

Table 1 Comparison of Nonlinear Materials

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G = I s [ 1.5 I inc ( switch ) ] I s ( 0 ) 1.5 I inc ( switch ) .
I s = I bias K 1 1 + F 1 sin 2 [ 3 c 1 I s + 4 ( L 1 / L 2 ) c 2 I c δ 1 ] ,
I c = I inc K 2 1 + F 2 sin 2 [ 3 c 2 I c + 4 ( L 2 / L 1 ) c 1 I s δ 2 ] ,

Metrics