Abstract

The concept of a magneto-optic current sensor that employs a fiber-optic Fabry–Perot resonator shaped into a single-turn helix is presented. The helical shape permits construction of a compact device that has the required polarization properties. Compared with a single-pass sensor, a large increase in sensitivity is obtained as a result of the finesse of the resonator. Experimental results confirm the theory and show that for a finesse of F = 6 the sensitivity is four times larger than for a single-pass sensor.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Smith, Appl. Opt. 17, 52 (1978).
    [CrossRef] [PubMed]
  2. A. Papp, H. Harms, Appl. Opt. 16, 1315 (1977).
    [CrossRef] [PubMed]
  3. F. Maystre, P. Gannagé, R. Dändliker, in Digest of Meeting on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1988), paper FCC4.
  4. C. H. Tang, IEEE Trans. Microwave Theory Tech. MTT-18, 69 (1970).
    [CrossRef]
  5. D. N. Payne, A. J. Barlow, J. J. Ramskov Hansen, IEEE J. Quantum Electron. QE-18, 477 (1982).
    [CrossRef]
  6. J. N. Ross, Opt. Quantum Electron. 16, 455 (1984).
    [CrossRef]
  7. A. Bertholds, R. Dändliker, IEEE J. Lightwave Technol. LT-6, 17 (1988).
    [CrossRef]
  8. J.-L. Picqué, S. Roizen, Appl. Phys. Lett. 27, 340 (1975).
    [CrossRef]
  9. A. J. Barlow, IEEE J. Lightwave Technol. LT-3, 136 (1985).
  10. J. Stone, Electron. Lett. 21, 504 (1985).

1988

A. Bertholds, R. Dändliker, IEEE J. Lightwave Technol. LT-6, 17 (1988).
[CrossRef]

1985

A. J. Barlow, IEEE J. Lightwave Technol. LT-3, 136 (1985).

J. Stone, Electron. Lett. 21, 504 (1985).

1984

J. N. Ross, Opt. Quantum Electron. 16, 455 (1984).
[CrossRef]

1982

D. N. Payne, A. J. Barlow, J. J. Ramskov Hansen, IEEE J. Quantum Electron. QE-18, 477 (1982).
[CrossRef]

1978

1977

1975

J.-L. Picqué, S. Roizen, Appl. Phys. Lett. 27, 340 (1975).
[CrossRef]

1970

C. H. Tang, IEEE Trans. Microwave Theory Tech. MTT-18, 69 (1970).
[CrossRef]

Barlow, A. J.

A. J. Barlow, IEEE J. Lightwave Technol. LT-3, 136 (1985).

D. N. Payne, A. J. Barlow, J. J. Ramskov Hansen, IEEE J. Quantum Electron. QE-18, 477 (1982).
[CrossRef]

Bertholds, A.

A. Bertholds, R. Dändliker, IEEE J. Lightwave Technol. LT-6, 17 (1988).
[CrossRef]

Dändliker, R.

A. Bertholds, R. Dändliker, IEEE J. Lightwave Technol. LT-6, 17 (1988).
[CrossRef]

F. Maystre, P. Gannagé, R. Dändliker, in Digest of Meeting on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1988), paper FCC4.

Gannagé, P.

F. Maystre, P. Gannagé, R. Dändliker, in Digest of Meeting on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1988), paper FCC4.

Harms, H.

Maystre, F.

F. Maystre, P. Gannagé, R. Dändliker, in Digest of Meeting on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1988), paper FCC4.

Papp, A.

Payne, D. N.

D. N. Payne, A. J. Barlow, J. J. Ramskov Hansen, IEEE J. Quantum Electron. QE-18, 477 (1982).
[CrossRef]

Picqué, J.-L.

J.-L. Picqué, S. Roizen, Appl. Phys. Lett. 27, 340 (1975).
[CrossRef]

Ramskov Hansen, J. J.

D. N. Payne, A. J. Barlow, J. J. Ramskov Hansen, IEEE J. Quantum Electron. QE-18, 477 (1982).
[CrossRef]

Roizen, S.

J.-L. Picqué, S. Roizen, Appl. Phys. Lett. 27, 340 (1975).
[CrossRef]

Ross, J. N.

J. N. Ross, Opt. Quantum Electron. 16, 455 (1984).
[CrossRef]

Smith, A. M.

Stone, J.

J. Stone, Electron. Lett. 21, 504 (1985).

Tang, C. H.

C. H. Tang, IEEE Trans. Microwave Theory Tech. MTT-18, 69 (1970).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J.-L. Picqué, S. Roizen, Appl. Phys. Lett. 27, 340 (1975).
[CrossRef]

Electron. Lett.

J. Stone, Electron. Lett. 21, 504 (1985).

IEEE J. Lightwave Technol.

A. Bertholds, R. Dändliker, IEEE J. Lightwave Technol. LT-6, 17 (1988).
[CrossRef]

A. J. Barlow, IEEE J. Lightwave Technol. LT-3, 136 (1985).

IEEE J. Quantum Electron.

D. N. Payne, A. J. Barlow, J. J. Ramskov Hansen, IEEE J. Quantum Electron. QE-18, 477 (1982).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

C. H. Tang, IEEE Trans. Microwave Theory Tech. MTT-18, 69 (1970).
[CrossRef]

Opt. Quantum Electron.

J. N. Ross, Opt. Quantum Electron. 16, 455 (1984).
[CrossRef]

Other

F. Maystre, P. Gannagé, R. Dändliker, in Digest of Meeting on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1988), paper FCC4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Fiber-optic Faraday current sensor consisting of a Fabry–Perot resonator shaped into a single-turn helix. The cylinder has a diameter of 28 mm and a length of 52 mm.

Fig. 2
Fig. 2

Experimental setup that uses a feedback loop to lock the optical frequency of the laser to the Fabry–Perot resonance and heterodyne polarimetry to measure the phase difference between the two eigenpolarizations at the output of the resonator. LD, laser diode; L's, lenses; OI, optical isolator; PBS's, polarizing beam splitters; BS's, beam splitters; M's, acousto-optic modulators; P's, polarizers; QWP, quarter-wave plate; D's, detectors.

Fig. 3
Fig. 3

Faraday-induced optical phase shift in the fiberoptic sensor. Curve 1, the response for a single pass through one loop of fiber; curve 2, the response for a Fabry–Perot resonator with a finesse of F = 6.2 compared with the experimental results (open circles).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M c = N c R c = [ cos γ s + i ( τ / 2 γ ) sin γ s i ( β / 2 γ ) sin γ s i ( β / 2 γ ) sin γ s cos γ s i ( τ / 2 γ ) sin γ s ] × [ e i τ s 0 0 e i τ s ] ,
Δ γ = [ ( τ V H s ) 2 + ( β / 2 ) 2 ] 1 / 2 [ ( τ + V H s ) 2 + ( β / 2 ) 2 ] 1 / 2 2 ( τ / γ ) V H s ,
4 sin 2 θ + [ ( π n 3 / 2 ) ( p 11 p 12 ) ( 1 + ν ) ( r 2 / λ Q ) 2 ] 2 × cos 6 θ 1 = 0 .
Δ ψ = ψ 1 ψ 2 = 2 tan 1 [ ρ tan ( Δ ϕ / 2 ) ] + δ ,

Metrics