Abstract

We report the demonstration of a technique using resonant degenerate four-wave mixing to produce high-resolution, background-free images of atomic distributions in flames. Comparison with laser-induced-fluorescence methods and applications of the method to species of interest in combustion are briefly discussed.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Bechtel, R. E. Teets, Appl. Opt. 18, 4138 (1979);D. R. Crosley, G. P. Smith, Opt. Eng. 22, 545 (1983).
    [CrossRef] [PubMed]
  2. M. J. Dyer, D. R. Crosley, Opt. Lett. 7, 382 (1982);G. Kychakoff, R. D. Howe, R. K. Hanson, J. C. McDaniel, Appl. Opt. 21, 3225 (1982);M. P. Lee, P. H. Paul, R. K. Hanson, Opt. Lett. 11, 7 (1986);J. Hanmann, J. M. Seitzman, R. K. Hanson, Opt. Lett. 11, 776 (1986);Y. Watanbe, T. Ikegami, T. Ueno, M. Masuda, M. Aka-zaki, Rev. Sci. Instrum. 58, 1632 (1987).
    [CrossRef] [PubMed]
  3. P. Ewart, S. V. O'Leary, J. Phys. B 15, 3669 (1982).
    [CrossRef]
  4. J. Pender, L. Hesselink, Opt. Lett. 10, 264 (1985).
    [CrossRef] [PubMed]
  5. P. Ewart, S. V. O'Leary, Opt. Lett. 11, 279 (1986).
    [CrossRef] [PubMed]
  6. R. A. Fisher, ed., Optical Phase Conjugation (Plenum, New York, 1984).
  7. P. Ewart, S. V. O'Leary, J. Phys. B 17, 4595, 4609 (1984).
    [CrossRef]
  8. R. G. Caro, M. C. Gower, IEEE J. Quantum Electron. QE-181376 (1982).
    [CrossRef]
  9. J. Cooper, A. Charlton, D. R. Meacher, P. Ewart, G. Alber, “Revised theory of degenerate four-wave mixing with broad bandwidth lasers,” submitted to Phys. Rev. A.
    [PubMed]

1986 (1)

1985 (1)

1984 (1)

P. Ewart, S. V. O'Leary, J. Phys. B 17, 4595, 4609 (1984).
[CrossRef]

1982 (3)

1979 (1)

Alber, G.

J. Cooper, A. Charlton, D. R. Meacher, P. Ewart, G. Alber, “Revised theory of degenerate four-wave mixing with broad bandwidth lasers,” submitted to Phys. Rev. A.
[PubMed]

Bechtel, J. H.

Caro, R. G.

R. G. Caro, M. C. Gower, IEEE J. Quantum Electron. QE-181376 (1982).
[CrossRef]

Charlton, A.

J. Cooper, A. Charlton, D. R. Meacher, P. Ewart, G. Alber, “Revised theory of degenerate four-wave mixing with broad bandwidth lasers,” submitted to Phys. Rev. A.
[PubMed]

Cooper, J.

J. Cooper, A. Charlton, D. R. Meacher, P. Ewart, G. Alber, “Revised theory of degenerate four-wave mixing with broad bandwidth lasers,” submitted to Phys. Rev. A.
[PubMed]

Crosley, D. R.

Dyer, M. J.

Ewart, P.

P. Ewart, S. V. O'Leary, Opt. Lett. 11, 279 (1986).
[CrossRef] [PubMed]

P. Ewart, S. V. O'Leary, J. Phys. B 17, 4595, 4609 (1984).
[CrossRef]

P. Ewart, S. V. O'Leary, J. Phys. B 15, 3669 (1982).
[CrossRef]

J. Cooper, A. Charlton, D. R. Meacher, P. Ewart, G. Alber, “Revised theory of degenerate four-wave mixing with broad bandwidth lasers,” submitted to Phys. Rev. A.
[PubMed]

Gower, M. C.

R. G. Caro, M. C. Gower, IEEE J. Quantum Electron. QE-181376 (1982).
[CrossRef]

Hesselink, L.

Meacher, D. R.

J. Cooper, A. Charlton, D. R. Meacher, P. Ewart, G. Alber, “Revised theory of degenerate four-wave mixing with broad bandwidth lasers,” submitted to Phys. Rev. A.
[PubMed]

O'Leary, S. V.

P. Ewart, S. V. O'Leary, Opt. Lett. 11, 279 (1986).
[CrossRef] [PubMed]

P. Ewart, S. V. O'Leary, J. Phys. B 17, 4595, 4609 (1984).
[CrossRef]

P. Ewart, S. V. O'Leary, J. Phys. B 15, 3669 (1982).
[CrossRef]

Pender, J.

Teets, R. E.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

R. G. Caro, M. C. Gower, IEEE J. Quantum Electron. QE-181376 (1982).
[CrossRef]

J. Phys. B (2)

P. Ewart, S. V. O'Leary, J. Phys. B 15, 3669 (1982).
[CrossRef]

P. Ewart, S. V. O'Leary, J. Phys. B 17, 4595, 4609 (1984).
[CrossRef]

Opt. Lett. (3)

Other (2)

J. Cooper, A. Charlton, D. R. Meacher, P. Ewart, G. Alber, “Revised theory of degenerate four-wave mixing with broad bandwidth lasers,” submitted to Phys. Rev. A.
[PubMed]

R. A. Fisher, ed., Optical Phase Conjugation (Plenum, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Arrangement of the pump and probe beams for DFWM. The intersection plane of the counterpropagating beams (the thin sheet) and the probe beam of circular cross section cuts a laminar flame from a slot burner. The probe beam is reflected only from regions containing resonantly interacting atoms. The phase-conjugate reflected probe is directed to a lensless television camera to record the intensity profile. The screen effectively blocks flame emissions and scattered light.

Fig. 2
Fig. 2

Intensity profile of a probe beam reflected from a planar section through a laminar flame recorded by a single laser shot. The approximate shape of the flame and the primary reaction zone are shown schematically in the upper part of the figure. The central 100 × 100 pixel area of the recorded image is shown.

Fig. 3
Fig. 3

Intensity variation of the DFWM signal as a function of the aspirated NaCl concentration. The experimental points (filled circles) were measured at the densest part of the flame. The theoretical (solid) curve is a best-fit curve calculated with Eq. (3).

Fig. 4
Fig. 4

Two-dimensional maps of flames produced by planar LIF and DFWM under similar Na concentrations and laser intensities. The spatial extent of the image is similar to that of Fig. 2.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

W = ( | η | 2 α Re 2 ) 1 / 2 ,
R = | η L | 2 / ( 1 + α Re L ) 2 ,
R = 4 α a 2 N 2 L 2 ( I / I s ) 2 exp ( 2 α a N L ) ,
S ( Δ ) = κ φ 2 32 Γ Δ ω D W ( v ) b ( Δ k · v ) 2 + b 2 d v .
φ = | Ω | 2 κ b Δ 2 + b 2 ,

Metrics