Abstract

A simple frequency-domain technique for measuring polarization-mode dispersion in single-mode fibers with random mode coupling is used to give what is to my knowledge the first direct experimental demonstration of the transition of the dispersion from a linear length dependence to a square-root-of-length dependence. Sensitivity to external perturbations is demonstrated by an order-of-magnitude increase in dispersion when the fiber is removed from a conventional spool and placed on a large-diameter drum. An expression for the length-dependent probability density function that describes the dispersion for highly coherent sources is also presented and confirmed experimentally.

© 1989 Optical Society of America

Full Article  |  PDF Article

Corrections

C. D. Poole, "Measurement of polarization-mode dispersion in single-mode fibers with random mode coupling: errata," Opt. Lett. 14, 829-829 (1989)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-14-15-829

References

  • View by:
  • |
  • |
  • |

  1. W. K. Burns, R. P. Moeller, C. Chen, IEEE J. Lightwave Technol. LT-1, 44 (1983).
    [CrossRef]
  2. M. Tsubokawa, Y. Sasaki, Electron. Lett. 24, 350 (1988).
    [CrossRef]
  3. C. D. Poole, R. E. Wagner, Electron. Lett. 22, 1029 (1986).
    [CrossRef]
  4. D. Andresciani, F. Curti, F. Matera, B. Daino, Opt. Lett. 12, 844 (1987).
    [CrossRef] [PubMed]
  5. N. S. Bergano, C. D. Poole, R. E. Wagner, IEEE J. Lightwave Technol. LT-5, 1618 (1987).
    [CrossRef]
  6. C. D. Poole, C. R. Giles, Opt. Lett. 13, 155 (1988).
    [CrossRef] [PubMed]
  7. C. D. Poole, N. S. Bergano, R. E. Wagner, H. J. Schulte, IEEE J. Lightwave Technol. LT-6, 1184 (1988).
  8. C. D. Poole, Opt. Lett. 13, 687 (1988).
    [CrossRef] [PubMed]
  9. S. Kawakami, M. Ikeda, IEEE J. Quantum Electron. QE-14, 608 (1978).
    [CrossRef]
  10. B. Crosignani, C. H. Papas, P. DiPorto, J. Opt. Soc. Am. 67, 1300 (1977).
    [CrossRef]
  11. S. C. Rashleigh, W. K. Burns, R. P. Moeller, R. Ulrich, Opt. Lett. 7, 40 (1982).
    [CrossRef] [PubMed]

1988 (4)

M. Tsubokawa, Y. Sasaki, Electron. Lett. 24, 350 (1988).
[CrossRef]

C. D. Poole, N. S. Bergano, R. E. Wagner, H. J. Schulte, IEEE J. Lightwave Technol. LT-6, 1184 (1988).

C. D. Poole, C. R. Giles, Opt. Lett. 13, 155 (1988).
[CrossRef] [PubMed]

C. D. Poole, Opt. Lett. 13, 687 (1988).
[CrossRef] [PubMed]

1987 (2)

D. Andresciani, F. Curti, F. Matera, B. Daino, Opt. Lett. 12, 844 (1987).
[CrossRef] [PubMed]

N. S. Bergano, C. D. Poole, R. E. Wagner, IEEE J. Lightwave Technol. LT-5, 1618 (1987).
[CrossRef]

1986 (1)

C. D. Poole, R. E. Wagner, Electron. Lett. 22, 1029 (1986).
[CrossRef]

1983 (1)

W. K. Burns, R. P. Moeller, C. Chen, IEEE J. Lightwave Technol. LT-1, 44 (1983).
[CrossRef]

1982 (1)

1978 (1)

S. Kawakami, M. Ikeda, IEEE J. Quantum Electron. QE-14, 608 (1978).
[CrossRef]

1977 (1)

Andresciani, D.

Bergano, N. S.

C. D. Poole, N. S. Bergano, R. E. Wagner, H. J. Schulte, IEEE J. Lightwave Technol. LT-6, 1184 (1988).

N. S. Bergano, C. D. Poole, R. E. Wagner, IEEE J. Lightwave Technol. LT-5, 1618 (1987).
[CrossRef]

Burns, W. K.

W. K. Burns, R. P. Moeller, C. Chen, IEEE J. Lightwave Technol. LT-1, 44 (1983).
[CrossRef]

S. C. Rashleigh, W. K. Burns, R. P. Moeller, R. Ulrich, Opt. Lett. 7, 40 (1982).
[CrossRef] [PubMed]

Chen, C.

W. K. Burns, R. P. Moeller, C. Chen, IEEE J. Lightwave Technol. LT-1, 44 (1983).
[CrossRef]

Crosignani, B.

Curti, F.

Daino, B.

DiPorto, P.

Giles, C. R.

Ikeda, M.

S. Kawakami, M. Ikeda, IEEE J. Quantum Electron. QE-14, 608 (1978).
[CrossRef]

Kawakami, S.

S. Kawakami, M. Ikeda, IEEE J. Quantum Electron. QE-14, 608 (1978).
[CrossRef]

Matera, F.

Moeller, R. P.

W. K. Burns, R. P. Moeller, C. Chen, IEEE J. Lightwave Technol. LT-1, 44 (1983).
[CrossRef]

S. C. Rashleigh, W. K. Burns, R. P. Moeller, R. Ulrich, Opt. Lett. 7, 40 (1982).
[CrossRef] [PubMed]

Papas, C. H.

Poole, C. D.

C. D. Poole, Opt. Lett. 13, 687 (1988).
[CrossRef] [PubMed]

C. D. Poole, C. R. Giles, Opt. Lett. 13, 155 (1988).
[CrossRef] [PubMed]

C. D. Poole, N. S. Bergano, R. E. Wagner, H. J. Schulte, IEEE J. Lightwave Technol. LT-6, 1184 (1988).

N. S. Bergano, C. D. Poole, R. E. Wagner, IEEE J. Lightwave Technol. LT-5, 1618 (1987).
[CrossRef]

C. D. Poole, R. E. Wagner, Electron. Lett. 22, 1029 (1986).
[CrossRef]

Rashleigh, S. C.

Sasaki, Y.

M. Tsubokawa, Y. Sasaki, Electron. Lett. 24, 350 (1988).
[CrossRef]

Schulte, H. J.

C. D. Poole, N. S. Bergano, R. E. Wagner, H. J. Schulte, IEEE J. Lightwave Technol. LT-6, 1184 (1988).

Tsubokawa, M.

M. Tsubokawa, Y. Sasaki, Electron. Lett. 24, 350 (1988).
[CrossRef]

Ulrich, R.

Wagner, R. E.

C. D. Poole, N. S. Bergano, R. E. Wagner, H. J. Schulte, IEEE J. Lightwave Technol. LT-6, 1184 (1988).

N. S. Bergano, C. D. Poole, R. E. Wagner, IEEE J. Lightwave Technol. LT-5, 1618 (1987).
[CrossRef]

C. D. Poole, R. E. Wagner, Electron. Lett. 22, 1029 (1986).
[CrossRef]

Electron. Lett. (2)

M. Tsubokawa, Y. Sasaki, Electron. Lett. 24, 350 (1988).
[CrossRef]

C. D. Poole, R. E. Wagner, Electron. Lett. 22, 1029 (1986).
[CrossRef]

IEEE J. Lightwave Technol. (3)

N. S. Bergano, C. D. Poole, R. E. Wagner, IEEE J. Lightwave Technol. LT-5, 1618 (1987).
[CrossRef]

C. D. Poole, N. S. Bergano, R. E. Wagner, H. J. Schulte, IEEE J. Lightwave Technol. LT-6, 1184 (1988).

W. K. Burns, R. P. Moeller, C. Chen, IEEE J. Lightwave Technol. LT-1, 44 (1983).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Kawakami, M. Ikeda, IEEE J. Quantum Electron. QE-14, 608 (1978).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Frequency dependence of power transmitted through the output analyzer for two different lengths of fiber wound on 28-cm-diameter drum.

Fig. 3
Fig. 3

Length dependence of polarization dispersion for fiber on a drum (filled circles) and on a spool (open circles), with the theoretical fit.

Fig. 4
Fig. 4

Distribution of |δτ| in a 3390-m length of spooled fiber obtained by varying the fiber temperature between 0 and 100°C and the source wavelength between 1.2 and 1.6 μm. The effective number of independent measurements is ~50. The theoretical curve was generated without free parameters.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d s ^ / d ω = Ω × s ^ ,
Ω = δ τ .
P δ τ ( δ τ , z ) = e - h z 2 Δ β z [ 2 δ ( u ) + h z I 0 ( h z u ) + h z u I 1 ( h z u ) ] ,
δ τ = Δ β z e - h z [ 1 + I 1 ( h z ) + 0 h z I 1 ( x ) d x ] .
p e ( ω 0 , Δ ω ) = Ω Δ ω π = δ τ Δ ω π ,
lim Δ ω 0 p e ( ω 0 , Δ ω ) / Δ ω = δ τ / π ,
δ τ = π lim Δ ω N / Δ ω .

Metrics