Abstract

Bistable dark solitary-wave solutions (bistable holes) to the generalized nonlinear Schrödinger equation are shown to exist in the normal dispersion regime for nonlinearities that are Kerr-like at low intensities, rise sufficiently rapidly at intermediate intensities, and become Kerr-like again or approach a constant value at large intensities. The bistable nature and soliton character of the holes are confirmed through numerical switching simulations. The concept of asymptotic pinning (of the x-dependent part) of the phase is used to explain the resultant velocities of the output solitons and the observed asymmetry in the emitted radiation.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription