Abstract

A novel pulse-compression scheme is proposed and demonstrated for compressing weak picosecond pulses having energies as small as 0.1 pJ. A semiconductor-laser amplifier is shown to impose a nearly linear frequency chirp on the pulse as a result of self-phase modulation occurring because of gain-saturation-induced index changes. The amplified chirped pulse can be compressed by passing it through a dispersive delay line. The theory shows that, depending on the operating conditions, the pulse width can be reduced by a factor of ~2–4 and the peak power can be enhanced by a factor of ~10–100. The preliminary experimental results are in agreement with theory.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a recent review, see A. S. L. Gomes, A. S. Gouveia-Neto, J. R. Taylor, Opt. Quantum Electron. 20, 95 (1988).
    [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 6.
  3. E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
    [CrossRef]
  4. N. A. Olsson, G. P. Agrawal, “Spectral shift and distortion due to self-phase modulation of picosecond pulses in 1.5-μm optical amplifiers,” submitted to Appl. Phys. Lett.
  5. G. P. Agrawal, N. K. Dutta, Long- Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), Chap. 2.
    [CrossRef]
  6. C. H. Henry, IEEE J. Quantum Electron. QE-18, 259 (1982).
    [CrossRef]
  7. M. Osinski, J. Buus, IEEE J. Quantum Electron. QE-23, 9 (1987).
    [CrossRef]
  8. R. Bellman, G. Burnbaum, W. G. Wagner, J. Appl. Phys. 34, 780 (1963).
    [CrossRef]
  9. L. M. Frantz, J. S. Nodvick, J. Appl. Phys. 34, 2346 (1963).
    [CrossRef]
  10. E. O. Schulz-Dubois, Bell Syst. Tech. J. 43, 625 (1964).
  11. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 10.
  12. R. H. Stolen, J. Botineau, A. Ashkin, Opt. Lett. 7, 512 (1982).
    [CrossRef] [PubMed]

1988 (1)

For a recent review, see A. S. L. Gomes, A. S. Gouveia-Neto, J. R. Taylor, Opt. Quantum Electron. 20, 95 (1988).
[CrossRef]

1987 (1)

M. Osinski, J. Buus, IEEE J. Quantum Electron. QE-23, 9 (1987).
[CrossRef]

1982 (2)

1969 (1)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

1964 (1)

E. O. Schulz-Dubois, Bell Syst. Tech. J. 43, 625 (1964).

1963 (2)

R. Bellman, G. Burnbaum, W. G. Wagner, J. Appl. Phys. 34, 780 (1963).
[CrossRef]

L. M. Frantz, J. S. Nodvick, J. Appl. Phys. 34, 2346 (1963).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 6.

N. A. Olsson, G. P. Agrawal, “Spectral shift and distortion due to self-phase modulation of picosecond pulses in 1.5-μm optical amplifiers,” submitted to Appl. Phys. Lett.

G. P. Agrawal, N. K. Dutta, Long- Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), Chap. 2.
[CrossRef]

Ashkin, A.

Bellman, R.

R. Bellman, G. Burnbaum, W. G. Wagner, J. Appl. Phys. 34, 780 (1963).
[CrossRef]

Botineau, J.

Burnbaum, G.

R. Bellman, G. Burnbaum, W. G. Wagner, J. Appl. Phys. 34, 780 (1963).
[CrossRef]

Buus, J.

M. Osinski, J. Buus, IEEE J. Quantum Electron. QE-23, 9 (1987).
[CrossRef]

Dutta, N. K.

G. P. Agrawal, N. K. Dutta, Long- Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), Chap. 2.
[CrossRef]

Frantz, L. M.

L. M. Frantz, J. S. Nodvick, J. Appl. Phys. 34, 2346 (1963).
[CrossRef]

Gomes, A. S. L.

For a recent review, see A. S. L. Gomes, A. S. Gouveia-Neto, J. R. Taylor, Opt. Quantum Electron. 20, 95 (1988).
[CrossRef]

Gouveia-Neto, A. S.

For a recent review, see A. S. L. Gomes, A. S. Gouveia-Neto, J. R. Taylor, Opt. Quantum Electron. 20, 95 (1988).
[CrossRef]

Henry, C. H.

C. H. Henry, IEEE J. Quantum Electron. QE-18, 259 (1982).
[CrossRef]

Nodvick, J. S.

L. M. Frantz, J. S. Nodvick, J. Appl. Phys. 34, 2346 (1963).
[CrossRef]

Olsson, N. A.

N. A. Olsson, G. P. Agrawal, “Spectral shift and distortion due to self-phase modulation of picosecond pulses in 1.5-μm optical amplifiers,” submitted to Appl. Phys. Lett.

Osinski, M.

M. Osinski, J. Buus, IEEE J. Quantum Electron. QE-23, 9 (1987).
[CrossRef]

Schulz-Dubois, E. O.

E. O. Schulz-Dubois, Bell Syst. Tech. J. 43, 625 (1964).

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 10.

Stolen, R. H.

Taylor, J. R.

For a recent review, see A. S. L. Gomes, A. S. Gouveia-Neto, J. R. Taylor, Opt. Quantum Electron. 20, 95 (1988).
[CrossRef]

Treacy, E. B.

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Wagner, W. G.

R. Bellman, G. Burnbaum, W. G. Wagner, J. Appl. Phys. 34, 780 (1963).
[CrossRef]

Bell Syst. Tech. J. (1)

E. O. Schulz-Dubois, Bell Syst. Tech. J. 43, 625 (1964).

IEEE J. Quantum Electron. (3)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

C. H. Henry, IEEE J. Quantum Electron. QE-18, 259 (1982).
[CrossRef]

M. Osinski, J. Buus, IEEE J. Quantum Electron. QE-23, 9 (1987).
[CrossRef]

J. Appl. Phys. (2)

R. Bellman, G. Burnbaum, W. G. Wagner, J. Appl. Phys. 34, 780 (1963).
[CrossRef]

L. M. Frantz, J. S. Nodvick, J. Appl. Phys. 34, 2346 (1963).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

For a recent review, see A. S. L. Gomes, A. S. Gouveia-Neto, J. R. Taylor, Opt. Quantum Electron. 20, 95 (1988).
[CrossRef]

Other (4)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 6.

N. A. Olsson, G. P. Agrawal, “Spectral shift and distortion due to self-phase modulation of picosecond pulses in 1.5-μm optical amplifiers,” submitted to Appl. Phys. Lett.

G. P. Agrawal, N. K. Dutta, Long- Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), Chap. 2.
[CrossRef]

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Frequency-chirp profiles of the amplified pulse for several input pulse energies when a Gausssian pulseis amplified in a semiconductor-laser amplifier with an unsaturated gain of 30 dB.

Fig. 2
Fig. 2

Compressed pulse when the amplified pulse is passed through a dispersive delay line such that LC/LD = 0.3. The dashed curve shows the input pulse, and the dotted–dashed curve shows the amplified pulse before compression.

Fig. 3
Fig. 3

Experimental traces of the pulse shape obtained by using a streak camera for the compressed pulse (solid curve) and the input pulse (dashed curve).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A z + 1 v g A t = 1 2 ( 1 - i α ) g ( N ) A ,
g ( N ) = Γ a ( N - N 0 ) .
N t = I q V - N τ c - g A 2 ω 0 ,
g t = g 0 - g τ c - g A 2 E sat ,
A out ( τ ) = A in ( τ ) exp [ ½ ( 1 - i α ) h ( τ ) ] ,
h ( τ ) = 0 L g ( z , τ ) d z = - ln { 1 - ( 1 - 1 G 0 ) exp [ - U in ( τ ) E sat ] } .
U in ( τ ) = - τ A in ( τ ) 2 d τ .
ϕ SPM ( τ ) = - α 2 h ( τ ) .
Δ ν = - 1 2 π ϕ SPM τ = - α ( G 0 - 1 ) 4 π G 0 P out ( τ ) E sat exp [ - U in ( τ ) E sat ] ,
P out ( τ ) = A out ( τ ) 2 = A in ( τ ) 2 exp [ h ( τ ) ] .
A in ( τ ) = ( E in τ 0 π ) 1 / 2 exp ( - τ 2 2 τ 0 2 ) ,
A comp ( τ ) = 1 2 π - A ˜ out ( ω ) exp ( i 2 β 2 ω 2 L C - i ω τ ) d ω ,

Metrics