Abstract

A new technique is successfully used to analyze in real time the pulse-to-pulse fluctuations of mode size and time duration in a picosecond Nd:YAG laser. In particular we show that the pulse length (30 psec) of our active–passive mode-locked Nd:YAG laser is stable to within 10% when the cavity is perfectly tuned and the saturable absorber is fresh. This technique is experimentally shown to be effective and reliable for real-time analysis of the stability of ultrashort laser pulses under a broad range of experimental conditions.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Bradley, G. C. New, IEEE Proc. 62, 312 (1974).
    [CrossRef]
  2. J. Hermann, B. Wilhelmi, Lasers for Ultrashort Light Pulses (North-Holland, Amsterdam, 1987).
  3. A. Cutolo, S. V. Benson, J. M. Madey, Appl. Phys. Lett. 52, 1566 (1988).
    [CrossRef]
  4. R. Bruzzese, V. Berardi, F. Cappiello, N. Spinelli, S. Solimeno, A. Cutolo, L. Zeni, J. Phys. D 21, 1710 (1988).
    [CrossRef]
  5. E. T. Scharlermann, A. M. Sessler, J. S. Wurtele, presented at the International Workshop on Coherent and Collective Properties in the Interaction of Relativistic Electrons and Electromagnetic Radiation, Rome, September 10–14, 1984.
  6. P. Luchini, S. Solimeno, Nucl. Intrum. Methods A250, 413 (1986).
    [CrossRef]
  7. G. D. Bloyd, D. A. Kleinman, J. Appl. Phys. 19, 3597 (1968).
  8. A. Cutolo, L. Zeni, R. Bruzzese, V. Berardi, S. Solimeno, V. Spinelli, J. Appl. Phys. 65, 2187 (1989).
    [CrossRef]
  9. E. Garmire, A. Yariv, IEEE J. Quantum Electron. QE-3, 222 (1967).
    [CrossRef]
  10. H. P. Kortz, IEEE J. Quantum Electron. QE-19, 578 (1983).
    [CrossRef]

1989 (1)

A. Cutolo, L. Zeni, R. Bruzzese, V. Berardi, S. Solimeno, V. Spinelli, J. Appl. Phys. 65, 2187 (1989).
[CrossRef]

1988 (2)

A. Cutolo, S. V. Benson, J. M. Madey, Appl. Phys. Lett. 52, 1566 (1988).
[CrossRef]

R. Bruzzese, V. Berardi, F. Cappiello, N. Spinelli, S. Solimeno, A. Cutolo, L. Zeni, J. Phys. D 21, 1710 (1988).
[CrossRef]

1986 (1)

P. Luchini, S. Solimeno, Nucl. Intrum. Methods A250, 413 (1986).
[CrossRef]

1983 (1)

H. P. Kortz, IEEE J. Quantum Electron. QE-19, 578 (1983).
[CrossRef]

1974 (1)

D. J. Bradley, G. C. New, IEEE Proc. 62, 312 (1974).
[CrossRef]

1968 (1)

G. D. Bloyd, D. A. Kleinman, J. Appl. Phys. 19, 3597 (1968).

1967 (1)

E. Garmire, A. Yariv, IEEE J. Quantum Electron. QE-3, 222 (1967).
[CrossRef]

Benson, S. V.

A. Cutolo, S. V. Benson, J. M. Madey, Appl. Phys. Lett. 52, 1566 (1988).
[CrossRef]

Berardi, V.

A. Cutolo, L. Zeni, R. Bruzzese, V. Berardi, S. Solimeno, V. Spinelli, J. Appl. Phys. 65, 2187 (1989).
[CrossRef]

R. Bruzzese, V. Berardi, F. Cappiello, N. Spinelli, S. Solimeno, A. Cutolo, L. Zeni, J. Phys. D 21, 1710 (1988).
[CrossRef]

Bloyd, G. D.

G. D. Bloyd, D. A. Kleinman, J. Appl. Phys. 19, 3597 (1968).

Bradley, D. J.

D. J. Bradley, G. C. New, IEEE Proc. 62, 312 (1974).
[CrossRef]

Bruzzese, R.

A. Cutolo, L. Zeni, R. Bruzzese, V. Berardi, S. Solimeno, V. Spinelli, J. Appl. Phys. 65, 2187 (1989).
[CrossRef]

R. Bruzzese, V. Berardi, F. Cappiello, N. Spinelli, S. Solimeno, A. Cutolo, L. Zeni, J. Phys. D 21, 1710 (1988).
[CrossRef]

Cappiello, F.

R. Bruzzese, V. Berardi, F. Cappiello, N. Spinelli, S. Solimeno, A. Cutolo, L. Zeni, J. Phys. D 21, 1710 (1988).
[CrossRef]

Cutolo, A.

A. Cutolo, L. Zeni, R. Bruzzese, V. Berardi, S. Solimeno, V. Spinelli, J. Appl. Phys. 65, 2187 (1989).
[CrossRef]

R. Bruzzese, V. Berardi, F. Cappiello, N. Spinelli, S. Solimeno, A. Cutolo, L. Zeni, J. Phys. D 21, 1710 (1988).
[CrossRef]

A. Cutolo, S. V. Benson, J. M. Madey, Appl. Phys. Lett. 52, 1566 (1988).
[CrossRef]

Garmire, E.

E. Garmire, A. Yariv, IEEE J. Quantum Electron. QE-3, 222 (1967).
[CrossRef]

Hermann, J.

J. Hermann, B. Wilhelmi, Lasers for Ultrashort Light Pulses (North-Holland, Amsterdam, 1987).

Kleinman, D. A.

G. D. Bloyd, D. A. Kleinman, J. Appl. Phys. 19, 3597 (1968).

Kortz, H. P.

H. P. Kortz, IEEE J. Quantum Electron. QE-19, 578 (1983).
[CrossRef]

Luchini, P.

P. Luchini, S. Solimeno, Nucl. Intrum. Methods A250, 413 (1986).
[CrossRef]

Madey, J. M.

A. Cutolo, S. V. Benson, J. M. Madey, Appl. Phys. Lett. 52, 1566 (1988).
[CrossRef]

New, G. C.

D. J. Bradley, G. C. New, IEEE Proc. 62, 312 (1974).
[CrossRef]

Scharlermann, E. T.

E. T. Scharlermann, A. M. Sessler, J. S. Wurtele, presented at the International Workshop on Coherent and Collective Properties in the Interaction of Relativistic Electrons and Electromagnetic Radiation, Rome, September 10–14, 1984.

Sessler, A. M.

E. T. Scharlermann, A. M. Sessler, J. S. Wurtele, presented at the International Workshop on Coherent and Collective Properties in the Interaction of Relativistic Electrons and Electromagnetic Radiation, Rome, September 10–14, 1984.

Solimeno, S.

A. Cutolo, L. Zeni, R. Bruzzese, V. Berardi, S. Solimeno, V. Spinelli, J. Appl. Phys. 65, 2187 (1989).
[CrossRef]

R. Bruzzese, V. Berardi, F. Cappiello, N. Spinelli, S. Solimeno, A. Cutolo, L. Zeni, J. Phys. D 21, 1710 (1988).
[CrossRef]

P. Luchini, S. Solimeno, Nucl. Intrum. Methods A250, 413 (1986).
[CrossRef]

Spinelli, N.

R. Bruzzese, V. Berardi, F. Cappiello, N. Spinelli, S. Solimeno, A. Cutolo, L. Zeni, J. Phys. D 21, 1710 (1988).
[CrossRef]

Spinelli, V.

A. Cutolo, L. Zeni, R. Bruzzese, V. Berardi, S. Solimeno, V. Spinelli, J. Appl. Phys. 65, 2187 (1989).
[CrossRef]

Wilhelmi, B.

J. Hermann, B. Wilhelmi, Lasers for Ultrashort Light Pulses (North-Holland, Amsterdam, 1987).

Wurtele, J. S.

E. T. Scharlermann, A. M. Sessler, J. S. Wurtele, presented at the International Workshop on Coherent and Collective Properties in the Interaction of Relativistic Electrons and Electromagnetic Radiation, Rome, September 10–14, 1984.

Yariv, A.

E. Garmire, A. Yariv, IEEE J. Quantum Electron. QE-3, 222 (1967).
[CrossRef]

Zeni, L.

A. Cutolo, L. Zeni, R. Bruzzese, V. Berardi, S. Solimeno, V. Spinelli, J. Appl. Phys. 65, 2187 (1989).
[CrossRef]

R. Bruzzese, V. Berardi, F. Cappiello, N. Spinelli, S. Solimeno, A. Cutolo, L. Zeni, J. Phys. D 21, 1710 (1988).
[CrossRef]

Appl. Phys. Lett. (1)

A. Cutolo, S. V. Benson, J. M. Madey, Appl. Phys. Lett. 52, 1566 (1988).
[CrossRef]

IEEE J. Quantum Electron. (2)

E. Garmire, A. Yariv, IEEE J. Quantum Electron. QE-3, 222 (1967).
[CrossRef]

H. P. Kortz, IEEE J. Quantum Electron. QE-19, 578 (1983).
[CrossRef]

IEEE Proc. (1)

D. J. Bradley, G. C. New, IEEE Proc. 62, 312 (1974).
[CrossRef]

J. Appl. Phys. (2)

G. D. Bloyd, D. A. Kleinman, J. Appl. Phys. 19, 3597 (1968).

A. Cutolo, L. Zeni, R. Bruzzese, V. Berardi, S. Solimeno, V. Spinelli, J. Appl. Phys. 65, 2187 (1989).
[CrossRef]

J. Phys. D (1)

R. Bruzzese, V. Berardi, F. Cappiello, N. Spinelli, S. Solimeno, A. Cutolo, L. Zeni, J. Phys. D 21, 1710 (1988).
[CrossRef]

Nucl. Intrum. Methods (1)

P. Luchini, S. Solimeno, Nucl. Intrum. Methods A250, 413 (1986).
[CrossRef]

Other (2)

E. T. Scharlermann, A. M. Sessler, J. S. Wurtele, presented at the International Workshop on Coherent and Collective Properties in the Interaction of Relativistic Electrons and Electromagnetic Radiation, Rome, September 10–14, 1984.

J. Hermann, B. Wilhelmi, Lasers for Ultrashort Light Pulses (North-Holland, Amsterdam, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the actively and passively mode-locked picosecond Nd:YAG laser. The optical cavity is approximately 1 m long and is formed by a curved mirror (M, radius of curvature 5 m) and by an étalon (E). Inside the resonator is a divergent lens (FD, f = −800 mm), an iris (I, aperture 1.5 mm) that ensures a single-transverse-mode oscillation, a Nd:YAG rod, a convergent lens (FC, f = 1500 mm), a Glan–Taylor prism (GT) with an antireflecting coating, the acousto-optic modulator (AOM), and a saturable absorber (D) that provides passive mode locking. The saturable absorber consists of a solution of Kodak 9740 (C49H43ClO3) in 1,2-dichloroethane (C2H4Cl2). The étalon can be used in three different configurations to provide 30-, 50-, and 100-psec pulses. All our measurements were made with 3-psec pulses. The output beam is passed through a pulse selector, which provides a single-micropulse selection.

Fig. 2
Fig. 2

Schematic of the measurement technique. The filter F suppresses the first harmonic so that radiation detected by DS and DL is only the second harmonic generated inside the nonlinear crystals (ammonium dihydrogen phosphate in our case). The DAS is formed by a linear gate and stretcher (LG), an analog-to-digital converter (ADC), and a personal computer (PC). BS’s, beam splitters.

Fig. 3
Fig. 3

Relative variances στ and σzr plotted versus the detuning parameter Δ = (fADMfc)/fc, where fADM is the driving frequency of the acousto-optic active mode locker and fc = 1/2T, with T being the round-trip time of the optical resonator. In our case fADM = 69.652 MHz when Δ = 0. Both sets of data were taken with fresh (triangles) and aged (circles) saturable absorbers. An aged saturable absorber is one after ~100,000 laser shots.

Tables (1)

Tables Icon

Table 1 Relevant Parameters of Our Active–Passive Mode-Locked Nd:YAG Laser

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P 2 / P 1 2 = q f ( Z R / L )
{ q π 2 L / Z R for Z R / L 1 q Z R / L for Z R / L 1 ,
i 1 E 1 P 1 τ 1 ,
Z R ( i L / i S ) 1 / 2 ,
τ ( i 1 4 / i S i L ) 1 / 2 .

Metrics