Abstract

An optoelectronic implementation based on optical neighborhood operations and electronic nonlinear feedback is proposed to perform morphological image processing such as erosion, dilation, opening, closing, and edge detection. Results of a numerical simulation are given and experimentally verified.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Serra, Image Analysis and Mathematical Morphology (Academic, New York, 1982), Chap. 9.
  2. T. Whalen, Photonics 22, 150 (1988).
  3. S. T. Goodman, W. T. Rhodes, Appl. Opt. 27, 1708 (1988).
    [CrossRef] [PubMed]
  4. M. A. Monahan, K. Bromley, R. P. Bocker, Proc. IEEE 65, 121 (1977).
    [CrossRef]

1988 (2)

1977 (1)

M. A. Monahan, K. Bromley, R. P. Bocker, Proc. IEEE 65, 121 (1977).
[CrossRef]

Bocker, R. P.

M. A. Monahan, K. Bromley, R. P. Bocker, Proc. IEEE 65, 121 (1977).
[CrossRef]

Bromley, K.

M. A. Monahan, K. Bromley, R. P. Bocker, Proc. IEEE 65, 121 (1977).
[CrossRef]

Goodman, S. T.

Monahan, M. A.

M. A. Monahan, K. Bromley, R. P. Bocker, Proc. IEEE 65, 121 (1977).
[CrossRef]

Rhodes, W. T.

Serra, J.

J. Serra, Image Analysis and Mathematical Morphology (Academic, New York, 1982), Chap. 9.

Whalen, T.

T. Whalen, Photonics 22, 150 (1988).

Appl. Opt. (1)

Photonics (1)

T. Whalen, Photonics 22, 150 (1988).

Proc. IEEE (1)

M. A. Monahan, K. Bromley, R. P. Bocker, Proc. IEEE 65, 121 (1977).
[CrossRef]

Other (1)

J. Serra, Image Analysis and Mathematical Morphology (Academic, New York, 1982), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme for adding electronic nonlinear feedback with thresholding to an optical convolutor. F, focal length.

Fig. 2
Fig. 2

Electronic thresholding formats.

Fig. 3
Fig. 3

Images produced by numerical stimulation.

Fig. 4
Fig. 4

Experimental photographs of convolution intensity distributions.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I 2 ( m d 2 , n d 2 ) = m n I 1 [ ( m - m ) d 1 , ( n - n ) d 1 ] × T ( m d 1 , n d 1 ) ,
d 2 d 1 f D ,

Metrics