Abstract

Using a general model to schematize polarimetric and interferometric measurements, we derive the dependence of the output signal on the input state of polarization. We show that in any birefringent medium, in addition to the eigenvectors that maximize the interferometric phase signal, there exist dual vectors that maximize the amplitude of the polarimetric signal. The dual vectors lie on the maximum circle normal to the eigenvector axis.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Stowe, D. R. Moore, R. G. Priest, IEEE J. Quantum Electron. QE-18, 1644 (1982).
    [CrossRef]
  2. T. Okoshi, IEEE J. Lightwave Technol. LT-5, 44 (1987).
    [CrossRef]
  3. K. H. Wanser, N. H. Safar, Opt. Lett. 12, 217 (1987).
    [CrossRef] [PubMed]
  4. A. D. Kersey, A. Dandridge, A. B. Tveten, Opt. Lett. 13, 288 (1988).
    [CrossRef] [PubMed]
  5. T. G. Giallorenzi, J. Bucaro, A. Dandridge, G. Siegel, J. H. Cole, S. Rashleigh, R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
    [CrossRef]
  6. P. S. Theocaris, E. E. Gdoutos, Matrix Theory of Photoelasticity (Springer-Verlag, New York, 1979).
  7. S. C. Rashleigh, IEEE J. Lightwave Technol. LT-1, 312 (1983).
    [CrossRef]
  8. R. Ulrich, A. Simon, Appl. Opt. 18, 2241 (1979).
    [CrossRef] [PubMed]
  9. R. Ulrich, Opt. Lett. 1, 109 (1977).
    [CrossRef] [PubMed]
  10. Y. Yen, R. Ulrich, Appl. Opt. 20, 2721 (1981).
    [CrossRef] [PubMed]

1988 (1)

1987 (2)

T. Okoshi, IEEE J. Lightwave Technol. LT-5, 44 (1987).
[CrossRef]

K. H. Wanser, N. H. Safar, Opt. Lett. 12, 217 (1987).
[CrossRef] [PubMed]

1983 (1)

S. C. Rashleigh, IEEE J. Lightwave Technol. LT-1, 312 (1983).
[CrossRef]

1982 (2)

D. W. Stowe, D. R. Moore, R. G. Priest, IEEE J. Quantum Electron. QE-18, 1644 (1982).
[CrossRef]

T. G. Giallorenzi, J. Bucaro, A. Dandridge, G. Siegel, J. H. Cole, S. Rashleigh, R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

1981 (1)

1979 (1)

1977 (1)

Bucaro, J.

T. G. Giallorenzi, J. Bucaro, A. Dandridge, G. Siegel, J. H. Cole, S. Rashleigh, R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Cole, J. H.

T. G. Giallorenzi, J. Bucaro, A. Dandridge, G. Siegel, J. H. Cole, S. Rashleigh, R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Dandridge, A.

A. D. Kersey, A. Dandridge, A. B. Tveten, Opt. Lett. 13, 288 (1988).
[CrossRef] [PubMed]

T. G. Giallorenzi, J. Bucaro, A. Dandridge, G. Siegel, J. H. Cole, S. Rashleigh, R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Gdoutos, E. E.

P. S. Theocaris, E. E. Gdoutos, Matrix Theory of Photoelasticity (Springer-Verlag, New York, 1979).

Giallorenzi, T. G.

T. G. Giallorenzi, J. Bucaro, A. Dandridge, G. Siegel, J. H. Cole, S. Rashleigh, R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Kersey, A. D.

Moore, D. R.

D. W. Stowe, D. R. Moore, R. G. Priest, IEEE J. Quantum Electron. QE-18, 1644 (1982).
[CrossRef]

Okoshi, T.

T. Okoshi, IEEE J. Lightwave Technol. LT-5, 44 (1987).
[CrossRef]

Priest, R. G.

D. W. Stowe, D. R. Moore, R. G. Priest, IEEE J. Quantum Electron. QE-18, 1644 (1982).
[CrossRef]

T. G. Giallorenzi, J. Bucaro, A. Dandridge, G. Siegel, J. H. Cole, S. Rashleigh, R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Rashleigh, S.

T. G. Giallorenzi, J. Bucaro, A. Dandridge, G. Siegel, J. H. Cole, S. Rashleigh, R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Rashleigh, S. C.

S. C. Rashleigh, IEEE J. Lightwave Technol. LT-1, 312 (1983).
[CrossRef]

Safar, N. H.

Siegel, G.

T. G. Giallorenzi, J. Bucaro, A. Dandridge, G. Siegel, J. H. Cole, S. Rashleigh, R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Simon, A.

Stowe, D. W.

D. W. Stowe, D. R. Moore, R. G. Priest, IEEE J. Quantum Electron. QE-18, 1644 (1982).
[CrossRef]

Theocaris, P. S.

P. S. Theocaris, E. E. Gdoutos, Matrix Theory of Photoelasticity (Springer-Verlag, New York, 1979).

Tveten, A. B.

Ulrich, R.

Wanser, K. H.

Yen, Y.

Appl. Opt. (2)

IEEE J. Lightwave Technol. (2)

S. C. Rashleigh, IEEE J. Lightwave Technol. LT-1, 312 (1983).
[CrossRef]

T. Okoshi, IEEE J. Lightwave Technol. LT-5, 44 (1987).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. G. Giallorenzi, J. Bucaro, A. Dandridge, G. Siegel, J. H. Cole, S. Rashleigh, R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

D. W. Stowe, D. R. Moore, R. G. Priest, IEEE J. Quantum Electron. QE-18, 1644 (1982).
[CrossRef]

Opt. Lett. (3)

Other (1)

P. S. Theocaris, E. E. Gdoutos, Matrix Theory of Photoelasticity (Springer-Verlag, New York, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Models of (A) interferometric and (B) polarimetric measurements. BS, beam splitter.

Fig. 2
Fig. 2

Representation of eigenvectors A1 and A2 and dual vectors (circle D).

Fig. 3
Fig. 3

Geometrical interpretation of the scalar product P and of weights R1 and R2.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

i V i exp ( i ϕ 0 ) + V u 2 = V i 2 + V u 2 + 2 Re [ V i exp ( i ϕ 0 ) V u * ] .
P = V i exp ( i ϕ 0 ) · V u * .
V i = R 1 A 1 + R 2 A 2 ,
R 1 2 + R 2 2 = 1.
V u = J · V i ,
V u = R 1 A 1 exp ( i Δ z ) + R 2 A 2 exp ( - i Δ z ) ,
P = [ cos Δ z + i ( R 2 2 - R 1 2 ) sin Δ z ] exp [ ( i ϕ 0 ) ,
Re P = cos Δ z cos ϕ 0 - ( R 2 2 - R 1 2 ) sin Δ z sin ϕ 0 .
Re P = cos ( ϕ 0 ± Δ z ) ,
Re P = cos Δ z cos ϕ 0 ,
P = P exp ( i ϕ ) ,
P 2 = 1 - 4 R 1 2 R 2 2 sin 2 Δ z ,
ϕ = arctan [ ( R 2 2 - R 1 2 ) tan Δ z ] + ϕ 0 .
P = V i · V u * = cos μ / 2.
P / Δ z = 0.
ϕ / Δ z = 0 ,
V u S 1 ¯ = V u V i ¯ = μ ,
d μ = Ω × V d z = Ω sin Ω V ¯ d z ,
cos Ω V ¯ = cos 2 ( Φ Ω - Φ V ) cos 2 ( Ψ Ω - Ψ V ) .
μ = 2 Δ z sin Ω V i ¯ .
V u = [ cos μ / 2 sin μ / 2 ] = [ cos Δ z sin Δ z ] ,
Δ = Δ [ 1 - cos 2 2 ( Φ Ω - Φ i ) cos 2 2 ( Ψ Ω - Ψ i ) 1 / 2 .
Δ = 2 Δ R 1 R 2 .

Metrics